

SCHOOL OF ENGINEERING

DIPLOMA

CHEMICAL ENGINEERING

SYLLABUS BOOK

AY 2023-24

INSTITUTE VISION

To emerge as an Institute of Excellence by imparting value-based education aided with Research, Innovation and Entrepreneurial skills.

	INSTITUTE MISSION
1.	To impart the holistic engineering education of highest quality & prepare socially responsible
	professionals with entrepreneurial skills.
2.	To prepare value-aided engineering professionals to meet up global industry requirements by
	imparting cutting edge professional education.
3.	To inculcate the attitude of research and innovation among the stake holders through
	experiential and project-based teaching-learning pedagogy.
4.	To acquire global talent pool by providing world class amenities for teaching, learning &
	research.

Graduates will demonstrate ability to:

PEO No	PROGRAMME EDUCATIONAL OBJECTIVES
PEO 1	Solve real-world engineering problems, design and develop innovative and cost-effective
	solutions exhibiting engineering skills/fundamentals to cater needs of society.
PEO 2	Excel in Industry/technical profession, higher studies, and entrepreneurship exhibiting
	comprehensive competitiveness.
PEO 3	Exhibit professional ethics & values, effective communication, teamwork, multidisciplinary
	approach, and ability to relate engineering issues to broader societal framework.

PO No	PROGRAMME OUTCOMES
PO 1	Engineering knowledge:
	Apply knowledge of engineering fundamentals, science, mathematics & engineering
	specialization for the solution of complex engineering problems.
PO 2	Problem analysis:
	Identify, formulate and analyze complex engineering problems leading to substantial
	conclusions using basic principles of mathematics, science and engineering.
PO 3	Design/development of solutions:
	Develop solutions for complex engineering problems and design system components or
	processes meeting specified needs having due consideration for the safety and societal &
	environmental considerations.
PO 4	Conduct investigations of complex problems:
	Use research-based knowledge & methods like design of experiments, analysis and
	interpretation of data, and synthesis of the information to provide valid & viable conclusions.
PO 5	Modern tool usage:
	Create, select, and apply appropriate techniques, resources, and modern engineering and IT
	tools for prediction and modeling of complex engineering activities with an understanding of
	the limitations.
PO 6	The engineer and society:
	Apply cognitive learning by the contextual knowledge to assess societal, health, safety, legal
	and cultural issues and following responsibilities relevant to the professional engineering
	practice.
PO 7	Environment and sustainability:
	Understand the impact of the professional engineering solutions in societal and
	environmental contexts, and demonstrate the knowledge & skill needed for sustainable
	development.
PO 8	Values & Ethics:
	Apply basic moral values & ethical principles and pledge to professional ethics/norms and
	responsibilities of the engineering practice.
PO 9	Individual and team work:
	Function effectively as an individual/as a team member or as a leader in diverse teams, and
.	in multidisciplinary settings.
PO 10	Communication:
	Communicate effectively on complex engineering activities with the engineering community
	and with society at large, such as, being able to comprehend and write effective reports and
DO 11	design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance:
	Demonstrate knowledge and understanding of the engineering and management principles
	and apply these to one's own work, as a member and leader in a team, to manage projects in
DC 42	multidisciplinary environments.
PO 12	Life-long learning:
	Recognize the need, do necessary preparation and ability to engage in independent and life-
	long learning in the broadest context of technological change.

PSO No	PROGRAMME SPECIFIC OUTCOMES (PSO)
	CHEMICAL ENGINEERING
PSO 1	Develop expertise in utilizing contemporary tools and technologies in cybersecurity to
	identify, analyze and mitigate threats, ensuring data integrity, confidentiality and
	availability of digital assets and systems.
PSO 2	Design and implement secure information systems and policies, applying principles of
	cryptography, network security, and risk management to solve real-world cybersecurity
	challenges and enhance the security posture across various sectors.
PSO 3	Prepare technically competent employee, researcher, entrepreneur, and excel in
	competitive exams, and increase passion for higher studies.

	Credit Guidelines (General)									
Component	Hour/Week	Credit	Total Hours/Semester							
Theory	1	1	15							
Practical	2	1	30							
Tutorial	1	1	15							
Note: In specif	Note: In specific cases; extra credits can be granted for specific/important subjects.									

	CO-PO Mapping Guidelines							
Mapping Level	% age Mapping	Indicator						
0 / -	0	No Mapping						
1	0-33	Low Level (Slightly Mapped)						
2	33-66	Medium Level (Moderately Mapped)						
3	>66	High Level (Strongly Mapped)						

Syllabus Book

Diploma Engineering (Chemical Engineering)

P P Savani University

Institute of Diploma Studies

Effective From: 2023-24

Authored by: P P Savani University

CONTENT

Sr. No.	Content	Page No
1	Syllabi of First year	1 to 37
2	Syllabi of Second year	38 to 73
3	Syllabi of Third year	74 to 97

FIRST YEAR DIPLOMA ENGINEERING

P P SAVANI UNIVERSITY

INSTITUTE OF DIPLOMA STUDIES

TEACHING & EXAMINATION SCHEME FOR DIPLOMA ENGINEERING PROGRAMME AY:2023-24

				Teaching Scheme					Examination Scheme						
Sem.	Course Code	Course Title	Offered By		Contact Hours			Coo die	Theory		Practical		Tutorial		m . 1
	douc			Theory	Practical	Tutorial	Total	Credit	CE	ESE	CE	ESE	CE	ESE	Total
	IDSH1010	Fundamentals of Mathematics	SH	3	0	2	5	5	40	60	0	0	50	0	150
	IDSH1020	Engineering Physics	SH	3	2	0	5	4	40	60	20	30	0	0	150
	IDME1010	Basics of Mechanical & Civil Engineering	ME	2	4	0	6	4	40	60	40	60	0	0	200
1	IDCE1010	Computer Applications	CE	3	4	0	7	5	40	60	40	60	0	0	200
	IDME1020	Engineering Workshop	ME	0	2	0	2	1	0	0	50	0	0	0	50
	CFLS1030	Functional English-I	CFLS	2	0	0	2	2	40	60	0	0	0	0	100
						Total	27	21							850
	IDSH1040	Engineering Mathematics	SH	3	0	2	5	5	40	60	0	0	50	0	150
	IDSH1050	Fundamentals of Chemistry	SH	3	2	0	5	4	40	60	20	30	0	0	150
	IDCV1010	Engineering Mechanics	CV	3	2	0	5	4	40	60	20	30	0	0	150
2	IDIT1010	Introduction to Computer Programming	IT	3	4	0	7	5	40	60	40	60	0	0	200
	IDSH1060	Electrical &Electronics Workshop	SH	0	2	0	2	1	0	0	50	0	0	0	50
	CFLS1040	Functional English-II	CFLS	2	0	0	2	2	40	60	0	0	0	0	100
						Total	26	21							800

Department of Applied Science & Humanities

Course Code: IDSH1010

Course Name: Fundamentals of Mathematics

Prerequisite Course(s): Algebra, Geometry, Trigonometry till 9th Standard level

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)					E	xamina	tion Sche	me (Ma	rks)	
Theory	y Practical Tutorial Credit		Credit	Th	eory	Pra	ctical	Tut	orial	Total
Theory	Practical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
3	0	2	5	40	60	-	-	50	0	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the course:

To help learners to

- outlining logarithm properties.
- implementing concepts of Determinants and Matrices for solving science and engineering problems.
- presenting usefulness of trigonometry.
- acquire knowledge of co-ordinate geometry and ability to work with applications to Engineering Mathematics.

	Section I		
Module No.	Content	Hours	Weightage in %
	Logarithm		
1.	Basic concept of logarithm, Rules and related examples, Applications of logarithm.	5	14
	Determinants and Matrices		
	Basic concept of determinants and matrices, Addition and		
2.	subtraction, Product, Inverse up to 3X3 matrix, Solution of	9	18
	simultaneous equations up to three variables, Applications of		
	determinants and matrices.		
	Trigonometry		
3.	Basic concept of trigonometry, Units of angles (degree and radian), Allied & compound angles, Multiple-submultiples angles, Graph of	9	18
0.	sine and cosine, Periodic function, Sum and factor formulae, Inverse	,	10
	trigonometric function, Applications of trigonometry.		
	Section II		
4.	Co-ordinate geometry		
	Introduction, Point, Distance formula, Mid-point, Locus of a point,		45
	Straight lines, Slope of a line, Equation of a straight line, The general	6	15
	equation, Angle between two lines, Circle, Tangent and normal, Equation of tangent and normal.		
5.	Vectors	8	15

	Basic concept of vector and scalar, Addition and subtraction, Product		
	of vectors, Geometric meaning of scalar and vector product, Angle		
	between two vectors, Applications of dot and cross product, Work		
	done and moment of force.		
	Mensuration		
6	Basic concept of Mensuration, Area of Triangle, Square, Rectangle,	8	20
6.	Trapezium, Parallelogram, Rhombus and Circle surface, Volume of	O	20
	Cuboids, Cone, Cylinder and Sphere.		

List of Tutorials:

Sr. No.	List of Tutorial	Hours
1.	Logarithm-1	2
2.	Logarithm-2	2
3.	Determinants and Matrices-1	2
4.	Determinants and Matrices-2	2
5.	Determinants and Matrices-3	2
6.	Trigonometry-1	2
7.	Trigonometry-2	2
8.	Trigonometry-3	2
9.	Co-ordinate geometry-1	2
10.	Co-ordinate geometry-2	2
11.	Vectors-1	2
12.	Vectors-2	2
13.	Mensuration-1	2
14.	Mensuration-2	2
15.	Mensuration-3	2

Text Book:

Title	Author(s)	Publication
Advanced Mathematics for Polytechnic	Dr.N.R. Pandya	Macmillan Publication
Engineering Mathematics - 3 rd Edition	Anthony croft &others	Pearson Education Publication

Reference Book:

Title	Author(s)	Publication
Basic Mathematics	G.C. Patel and Ami C. Shah	Atul Prakashan
Applied Mathematics for Polytechnics - 10 th Edition	H. K. Dass	H. K. Dass
Applied Mathematics	W. R.Neelkanth	Sapna Publication

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests, each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the Course Coordinator.

• End Semester Examination consists of 60 marks.

Tutorial:

- Continuous evaluation consists of performance of tutorial which will be evaluated out of 10 Marks for each tutorial and average of the same will be converted to 30 marks.
- MCQ based examination consists of 20 marks.

Course Outcome(s):

After the completion of the course, students will be able to:

THICCT CHIC COIL	pretion of the course, statemes will be able to
CO1	Explain logarithmic properties and solve exponential expressions.
CO2	Demonstrate the ability to crack engineering related problems based on determent and matrices.
CO3	Define properties of trigonometry and vectors in contruction.
CO4	Establish the knowledge of coordinate geometry, and ability to solve engineering problems.
CO5	Explain the surface area and volume of different shapes and bodies.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Logarithm	1,2,3,5
2	Determinants and Matrices	2,3,4,5
3	Trigonometry	2,3,4,5,6
4	Coordinate geometry	2,3,5
5	Vectors	2,3,5
6	Mensuration	1,2,3,5

Department of Applied Science & Humanities

Course Code: IDSH1020

Course Name: Engineering Physics

Prerequisite Course(s): Concept of Science up to 9th Standard

Teaching & Examination Scheme

Teaching Scheme (Hours/Week)			E	xaminat	ion Scher	ne (Marl	rs)			
Theory Practical T	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total	
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
3	2	0	4	40	60	20	30	0	0	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the course:

- The student will demonstrate the ability to think in core concept of their engineering application by studying various topics involved in branch specific applications.
- The student will demonstrate the ability to use appropriate mathematical techniques and concepts to obtain quantitative solutions to problems in physics.
- In courses involving laboratory, the student will demonstrate the ability to collect and analyze data and to prepare coherent reports of his or her findings.

	Section I		
Module No.	Content	Hours	Weightage in %
1.	SI Units & Measurements: Need of measurement and unit in engineering and science, Definition of unit and requirements of standard unit, Systems of units- CGS, MKS and SI, Fundamental and Derived quantities and their units, Least count and range of instrument, Vernier caliper, Micrometer screw gauge, Accuracy, Precision, Error and types of error, Estimation of errors - Absolute error, Relative error and Percentage error, Rules and identification of significant figures	5	10
2.	Motion in a Plane: Scalar and vector quantities, Position and displacement vectors, General vectors and their notations, Equality of vectors, multiplication of vectors by a real number, Addition and subtraction of vectors, Relative velocity, Unit vector, Resolution of a vector in a plane - rectangular components, Scalar and Vector product of vectors, Motion in a plane, Cases of uniform velocity and uniform acceleration-projectile motion, Uniform circular motion	6	15
3.	Force and Motion: Recapitulation of equations of motion, Newton's 1st law of motion, Force, basic forces in motion, Gravitational force, Electrostatic force, Electromagnetic force, Nuclear force, Inertia, types of inertia,	6	15

	Momentum and Newton's 2nd law of motion, Impulse of force, Impulse as the product of force and time, impulse as the difference of momentum, Newton's 3rd law of motion and its examples, Law of conservation of momentum		
4.	Work, Energy and Power: Work done by a constant force and a variable force, Kinetic energy, Work-energy theorem, Power, Notion of potential energy, Potential energy of a spring, Conservative forces, Conservation of mechanical energy (kinetic and potential energies), Non-conservative forces, Motion in a vertical circle, Elastic and inelastic collisions in one and two dimensions	5	10
	Section II		
5.	Mechanical Properties of Solids and fluids: Deforming force, Restoring force, Elastic and plastic body, Stress and Strain with their types, Elastic limit, Hooke's law, Young's modulus, Bulk modulus, Modulus of rigidity and Relation between them (no derivation), Stress- Strain diagram, Yield point, Ultimate stress, Breaking stress, Factor of safety. Pascal's law and its applications (hydraulic lift and hydraulic brakes), Effect of gravity on fluid pressure, Viscosity, Stokes' law, terminal velocity, streamline and turbulent flow, critical velocity, Bernoulli's theorem and its applications, Surface energy and surface tension, angle of contact	8	20
6.	Heat Transfer: Introduction to thermodynamics, Temperature and Heat, Transmission of heat - Conduction, Convection and Radiation, Good and bad conductor of heat with examples, Law of thermal conductivity, Coefficient of thermal conductivity and its S.I. unit Heat capacity and Specific heat of materials, Celsius, Fahrenheit and Kelvin temperature scales and their conversion formula	5	10
7.	Oscillations: Periodic motion - time period, frequency, displacement as a function of time, Periodic functions, Simple harmonic motion (S.H.M) and its equation, Phase Oscillations of a spring-restoring force and force constant, Energy in S.H.M. Kinetic and potential energies, Simple pendulum derivation of expression for its time period, Free, forced and damped oscillations (qualitative ideas only), resonance	5	10
8.	Waves: Wave motion, Transverse and longitudinal waves, Speed of wave motion, Displacement relation for a progressive wave, Principle of superposition of waves, Reflection of waves, Sanding waves in strings and organ pipes, Fundamental mode and harmonics, Beats, Doppler effect	5	10

List of Practical:

Sr. No.	List of Practical	Hours
1.	To study about basic unit conversion and dimension analysis.	4
2.	To measure length and diameter of the given object using Vernier callipers.	2
3.	To measure the thickness of slit and diameter of wire with help of micrometer Screw Gauge.	2
4.	To determine the surface tension of water by capillary rise method.	4
5.	To Verify Ohm's Law by using an Ammeter & Voltmeter	2
6.	To determine the wavelength of sound produced (i) in an air column and the velocity of sound in air at room temperature using a resonance column and a tuning fork.	4
7.	To determine Young's modulus of a material of a beam by the method of bending of a beam.	4
8.	To determine the modulus of rigidity of the material of wire by dynamical method.	2
9.	To determine the value of 'g' by using a Simple Pendulum.	2
10.	Measurement of g: Use of a Kater's Pendulum.	2
11.	To measure the temperature of given material by any temperature measuring instrument.	2

Text Book:

Title	Author(s)	Publication
Basic physics for Diploma group -1	-	Atul Prakashan

Reference Books:

Title	Author(s)	Publication
Physics Part-I and II	Resnick and Haliday	Wiley EasternPublication
Concept of Modern Physics	Arthur Beiser	Tata McGrawHill
Concept of Physics	H CVerma	-
Fundamental of physics	Gomber & Gogia	Pradeep publicationsJalandhar
NCERT Physics part 1 & 2	-	NCERT

Course Evaluation:

Theory:

- Continuous Evaluation Consist of Two Test Each of 30 Marks and 1 Hour of duration.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the Course Coordinator.
- End Semester Examination will consist of 60 Marks Exam.

Practical:

- Continuous Evaluation Consist of Performance of Practical which should be evaluated out of 10 for each practical in the next turn and average of the same will be converted to 10 Marks.
- Internal Viva component of 10 Marks.
- Practical performance/quiz/drawing/test of 20 Marks during End Semester Exam.
- Viva/Oral performance of 10 Marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, students will be able to:

CO 1	Identify physical quantities, unit systems and estimate measurements with accuracy by minimizing errors to solve real life measurements.
CO 2	Classify different types of motion, interpreat the equation of motion and conservation law of momentum to describe motion of rocket, recoil of gun etc. derive relationships for work, energy and power and solve related problems.
CO 3	Understand the concept of elasticity, it's types and articulate in engineering applications, especially in civil engineering. the knowledge is extended to explore the properties of fluids, construct the concepts of viscosity and surface tension.
CO 4	Explain the basics of heat transfer and employ the knowledge of heat and thermodynamics in different engineering sectors especially mechanical and chemical.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
01	Introductory Concepts	3,5
02	Mechanics	1,4
03	Work, Energy and Power	1,3
04	Mechanical properties of solids	2,6
05	Properties of fluids	1,5
06	Heat transfer	3,4

Department of Mechanical Engineering

Course Code: IDME1010

Course Name: Basics of Mechanical and Civil Engineering

Prerequisite Course(s): -

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Examination Scheme (Marks)							
Theory Practical Tutoria	Tutorial	Credit	Theory		Practical		Tutorial		Total	
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
02	04	00	04	40	60	40	60	00	00	200

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- acquire an inclusive knowledge of fundamental concept of Mechanical Engineering.
- understand working of simple mechanical devices.
- study and gain significance of Mechanical Engineering in various fields.
- read and interpret the building drawing
- select different types of construction materials as per requirements

	Section I		
Module No.	Content	Hours	Weightage in %
1.	Introduction of Mechanical Engineering: Introduction, Scope, Importance, Basic terminologies in mechanical engineering, Basic mechanical components used in routine, Pipe and pipe fittings, Hand tools, Power tools	02	7
2.	Heat interactive equipment: Heat transfer and its Modes, Boilers, Classification and Working, Concept of Accessories and Mountings – Types, Applications, Primemovers, Meaning, Classification, Steam turbine working, Layout of thermal power plant, Working and applications, Internal combustion engines – Definition, Classification, Components, Working of two-stroke and four-stroke engines, S.I. and C.I. engines	04	13
3.	Power Transmission and Safety: Power transmission: Importance, Modes, Types, Applications, Couplings in power transmission, Safety norms to be followed for preventing accidents.	03	10
4.	Hydraulic and pneumatic devices: Concept of theory of fluid flow, general properties of fluid flow, Pumps,	03	10

	Water turbines, and Air compressors – working principle, types, parts, performance, troubles and remedies, applications.		
5.	Manufacturing processes: Overview of manufacturing processes, Welding concept and overview, Types, Arc and Gas welding, Accessories and Consumables, Precautions and Safety during arc and gas welding, Casting - Introduction, Applications.	03	10
	Section II		
6.	Civil Engineering: An Overview Introduction, Branches, Scope, Impact, Role of Civil Engineer, Unit of measurement, Unit conversion (Length, Area, Volume).	02	7
7.	Civil Engineering Surveying: Surveying & leveling (its importance and types), Necessity for leveling, Principals of surveying, Instrument/tools used for survey and level, Various methods of finding the field survey measurements, Chain and Compass Survey	05	17
8.	Civil Engineering Drawing: Types of building drawings, Abbreviation, conventions & symbols in civil drawing, building byelaws for planning of residential building and industrial building, Planning of simple residential and industrial building	04	13
9.	Construction Materials: Common construction materials such as cement, Brick, Stone, Timber, Steel and Concrete, Properties of each materials & their acceptable standards, Quality parameters of materials, Estimations and costing for simple structure (only the material cost)	04	13

List of Practical:

Sr. No.	Details of Practical	Hours
1.	Study of few selected boilers, accessories and mountings	02
2.	Numerical based on heat interactive equipment	02
3.	Study of power and motion transmission systems	04
4.	Numerical based on power transmission and safety	02
5.	Study of various pumps	04
6.	Numerical based on hydraulic and pneumatic devices	02
7.	Study and demonstration of basic machine tools	04
8.	Numerical based on manufacturing processes	02
9.	Machine parameters of wheel and differential axel apparatus	04
10.	Study and demonstration of basic mechanical equipment	04
11.	Unit Conversation Exercise	02
12.	Linear Measurement.	04
13.	Angular Measurement (Prismatic Compass)	04
14.	Angular Measurement (Surveyor Compass)	04
15.	Determine R.L of given point by Dumpy level without change point.	04
16.	Determine R.L of given point by Dumpy level with change point.	04
17.	Brick masonry bonds	04

18.	Aggregate experiments	02
19.	Brick masonry tests	02

Reference Book(s):

Title	Author/s	Publication		
Elements of Mechanical engineering	P. S. Desai and S. B. Soni	Atul Prakashan		
Theory of Machines	R. S. Khurmi and J. K. Gupta	S. Chand		
Heat engine	Shah and Pandya	Charotar Publishing House		
Hydraulic machines	Jagdish Lal	Metropolitan Book Company		
Elements of Workshop	Hazara Chaudhary	Asia Publishing House		
Text book on Surveying& Levelling	S. B. Junnarkar and H. J. Shah	Laxmi Publication		

Course Evaluation:

Theory:

- Continuous Evaluation Consist of Two Test Each of 30 Marks and 1 Hour of duration.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the Course Coordinator.
- End Semester Examination will consist of 60 Marks Exam.

Practical:

- Continuous Evaluation Consist of Performance of Practical which should be evaluated out of 10 for each practical in the next turn and average of the same will be converted to 10 Marks.
- Internal Viva component of 10 Marks.
- Practical performance/quiz/drawing/test of 20 Marks during End Semester Exam.
- Viva/Oral performance of 10 Marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, students will be able to:

CO 1	Undertsand the mechanical engineering background.
CO 2	Discover heat transfer in context with engines and boilers.
CO 3	Differentiate power transmission working.
CO 4	Identify the scope of civil engineering based on field experience.
CO 5	Illustrate mesurements of surveying & levelling & building components.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction to Mechanical Engineering	1,2
2	Heat Interactive equipment	2,4
3	Power Transmission and Safety	1,2,3
4	Hydraulic and pneumatic devices	2,4
5	Manufacturing Processes	2,4,6
6	Civil Engineering: An Overview	1,2
7	Civil Engineering Drawing	2,4
8	Construction Materials	2,4,5

Department of Chemical Engineering

Course Code: IDCE1010

Course Name: Computer Applications

Prerequisite Course (s):--

Teaching & Examination Scheme:

Teaching Scheme(Hours/Week)		Teaching Scheme(Hours/Week) Examination Scheme(Marks)					s)			
Theory	Theory Practical Tutorial	Credit	Т	`heory	Pr	actical	Τι	utorial	Total	
Theory			CE	ESE	CE	ESE	CE	ESE	Total	
03	04	00	05	40	60	40	60	00	00	200

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- Familiarize with components of computer and basic operations of it.
- Provide practical and hands-on experience of application used to create documents.
- Introduce internet and its usage.

Section I					
Module No.	Content	Hours	Weightage in%		
1.	Basics of Computer System Introduction and Characteristics, Generation, Classification, Applications, describe computer hardware and software, Identify I/O, Devices, describe functioning of CU, ALU and memory unit, differentiate various types of printers, Demonstrate various file handling operations, Introduction to Memory, Memory hierarchy, Primary memory and its type, Secondary memory, Classification of Secondary memory, Cache Memory and Virtual Memory.	08	20		
2.	Software concept Classification of Software, System software and Application Software, Overview of Operating System, Objectives and Functions of O.S, Types of Operating System, Batch Processing, Multiprogramming, Time Sharing OS, Features of DOS, Windows and UNIX, Programming Languages, Compiler, Interpreter, Computer Virus Different Types of computer virus, Detection and prevention of Virus Application of computers in different Domain. Installation of device drivers and other required software, need and method of backup.	08	15		
3.	Using MS-Word Use basics text formatting features, manipulate text, use page	07	15		

	Setup features, use spell and grammar utility, Work with graphics/		
	clipart, Create and manipulate table, use auto shapes and its		
	formatting with text, Use Image and table formatting.		
	Section II		
	Using MS-Excel		
4.	Use basic formatting and data entry features, use formula and	07	20
4.	functions, Work with graphics, Create and manipulate charts, Use	07	20
	header and footer options, Setup page layout and print worksheet		
	Using MS - PowerPoint		
	Create new presentation and apply basic formatting features, use		
5.	master slide, Create and manipulate table, Work with objects and	07	15
	clips, Work with video, Work with audio, use special effects, Use		
	navigation and hyper linking, Custom Animation and Transitions		
	Multi Media, Internet usage and Google Applications		
	Introduction of Multimedia, Types of Multimedia, and Use of		
	Multimedia in various platforms, Describe Internet, WWW and		
	Web Browsers: Web Browsing software, Surfing the Internet,		
6.	Chatting on Internet, Basic of electronic mail, Using Emails,	08	15
0.	Document handling, Network definition, Common terminologies:	00	13
	LAN, WAN, Node, Host, Workstation, bandwidth, Network		
	Components: Severs, Clients, Communication Media.		
	Introduction of Google Applications, Gmail, Google Drive, Docs,		
	Spreadsheet		

List of Practical(s):

Sr.No	List of Practical	Hours
1.	Introduction to different hardware components of PC and Assembling of PC.	02
2.	Installation of OS and other Software. Partitions of Drive, Compression Utilities: WinZip, Defragmenting Hard, Formatting Hard disk, etc.	04
3.	Use accessories utilities of windows OS the User Interface, Using Mouse and Moving Icons on the screen, The My Computer Icon, The Recycle Bin, Status Bar, Start and Menu & Menu-selection, Running an Application, Windows Explorer Viewing of File, Folders and Directories, Creating and Renaming of files and folders, Opening and closing of different Windows, Control Panels, Setting the date and Sound, Create Users and password.	02
4.	Entering and editing text in document file. Apply formatting features on Text like Bold, Italics, Underline, font type, color and size, Apply features like bullet, numbering in Microsoft word.	04
5.	Create and manipulate tables, create documents, insert images, format tables, Smart art, Chart in Microsoft word, Insert Hyperlink, Page number and textbox in word.	04
6.	Create Event Registration Form and Resume in Microsoft word.	04
7.	Entering and editing data in worksheet, Fill Series, fill with formatting and without formatting Using Microsoft Excel.	02
8.	Create and manipulate Charts, Shape, Sparkline Charts, Clipart, and table.	04
9.	Filter Data Using Filter and advanced filter function with more than 2 conditions,	02

	Freeze row & Column in Microsoft Excel.	
10.	Create Mark sheet, and Pay slips using Excel, Apply various formula and functions in the sheet.	06
11.	Print sheet using print area, Page setting, print titles, Adjusting margins, Page break, headers and footers.	02
12.	Basic operations of Power point, Create PPT and inset and delete slides in power point, Use of Master Slide in Presentation, Create Project presentations, Lecture presentations, Apply Custom animation & Transition. Apply basic formatting features in presentation like font, font size, font color, text fill, spacing and line spacing Formatting text boxes, word arts, styles bullet and numbering in Microsoft power point. Working with drawing tools, applying shape or picture styles, Applying object borders, object fill, object effects in Microsoft Power point.	16
13.	Working with video, Link to video and sound files using power point.	02
14.	Internet Searching, Browsers, Various functions of Browsers (Eg. Bookmark, Customize Settings), Study of components like switches, bridges, routers, Wi-Fi router,	02
15.	Introduction of Google application, Compose Gmail, File attachment, add signature.	02
16.	Demonstration of Google drive, Sharing File Using Google drive, Spreadsheet, Docs and Google slides	02

Reference Book(s):

Title	Author/s	Publication
Computer Course	R.Taxali	Tata McGraw Hills. New Delhi.
MS-Office for Dummies	Wallace Wang	Wiley India, New Delhi
Basic Computer Engineering	Petes S.J.,Francis.	TataMcGraw-Hill Education,2011

Web Material Link(s):

- http://www.digimat.in/nptel/courses/video/106104128/L01.html
- https://www.youtube.com/watch?v=3QiItmIWmOM

Course Evaluation:

Theory

- Continuous Evaluation Consist of two Tests of 30 Marks and 1 Hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the Course Coordinator.
- End Semester Examination will consist of 60 Marks Exam.

Practical

- Continuous Evaluation Consist of Performance of Practical which should be evaluated out of 10 for each practical in the next turn and average of the same will be converted to 20 Marks.
- Internal Viva component of 20 Marks.
- Practical performance/quiz/test of 30 Marks during End Semester Exam.
- Viva/Oral performance of 30 Marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, students will be able to:

CO 1	Identify the components of a computer system and demonstrate basic proficiency in
	commonly used applications.
CO 2	Analyze, synthesize and evaluate school, work or home situations and use application
	software to complete information processing tasks efficiently and effectively.
CO 3	Apply the concepts of microsoft office – word, excel, and power point to produce
	professional documentation and presentation.
CO 4	Access the internet and learn to use the browse, search and hyperlink capabilities of web
	browsers.
CO 5	Identify the significance of multimedia and its utilization in various platforms.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Basics of Computer system	1,2
2	Computer Software	1,2
3	Using MS-Word	2,3
4	Using MS-Excel	2,3,4
5	Using MS-Powerpoint	2,3
6	Multi Media, Internet Usage and Google Applications	2,3,5

Department of Mechanical Engineering

Course Code: IDME1020

Course Name: Engineering Workshop

Prerequisite Course(s): -

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Examination Scheme (Marks)						
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tutorial		Total
Theory	Practical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
00	02	00	01	00	00	50	00	00	00	50

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- Understand basic know-how of various hand tools and their use in different sections of manufacturing
- Understand the use of workshop practices in day to day industrial as well domestic life that help to dissolve the routine problems
- Build the understanding of the complexity of the industrial job, along with time and skills requirements of the job
- Learn about the safety measures to be taken while working in workshop.
- Learn about operation wise tool selection.

	Section I				
Module No.	Content	Hours			
1.	Introduction and Demonstration of Safety Norms and various shops: Introduction to various shops / sections and workshop layouts, Safety norms to be followed in a workshop.	-			
2.	Fitting shop: Introduction of fitting shop, Safety, Making a job as per drawing including marking and performing other operations	-			
3.	Carpentry shop: Introduction of carpentry shop, Safety, Making a job as per drawing including marking and performing other operations	-			
4.	Smithy shop: Introduction of smithy shop, Safety, Making a job as per drawing including marking and performing other operations	-			

	Section II				
5.	Sheet metal shop: Introduction of sheet metal shop, Safety, Making a job as per drawing including marking and performing other operations				
6.	Pipe fitting: Introduction of pipe fitting shop, Safety, understanding various pipe fitting tools and performing operations	-			
7.	Machine Shop: Introduction and demonstration of various machines likeLathe, Drilling, Grinding, Hack Saw Cutting etc.	-			

List of Practical:

Sr. No.	List of Practical			
1.	Introduction and Demonstration of Safety Norms and various shops.	02		
2.	To Perform a Job of Fitting Shop.	04		
3.	To Perform a Job of Carpentry Shop.	06		
4.	To Perform a Job of Black Smithy shop.	06		
5.	To Perform a Job of Sheet metal Shop.	04		
6.	To Perform a Job of Plumbing Shop	04		
7.	Introduction to Machine Tool	04		

Reference Book(s):

Title	Author/s	Publication
Workshop Technology-I	Hazra and Chaudhary	Media promoters &
Workshop reciniology-r	Hazi a anu Chauunary	Publisher private limited.
Workshop practice manual	K.Venkata Reddy	B.S.Publications
Mechanical workshop practice	K.C. John	PHI

Course Evaluation:

Practical:

- Continuous Evaluation Consist of Performance of Practical which should be evaluated out of 10 for each practical in the next turn and average of the same will be converted to 20 Marks.
- Internal Viva component of 20 Marks.
- Practical performance/quiz/test of 30 Marks during End Semester Exam.
- Viva/Oral performance of 30 Marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, students will be able to:

Thich the com	piction of the course, students will be able to:
CO 1	Understand the various measuring instruments.
CO 2	Understand the safety norms required in the workshop.
CO 3	Understand the application of various tools required for different operations.
CO 4	Remember the process of manufacture from a given raw material.
CO 5	Explain various manufacturing processes in machine shop.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction and Demonstration of Safety Norms	2,4
	and Various Shops	
2	Fitting Shop	2,4,6
3	Carpentry Shop	2,4,6
4	Smithy Shop	2,4,6
5	Sheet metal shop	2,3,4
6	Pipe fittings	2,3,5
7	Machine Shop	2,3,4

P P Savani University Centre for Language Studies

Course Code: CFLS1030

Course Name: Functional English-I

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Ex	kaminati	on Schem	ie (Mark	s)		
Theory	Practical	Tutorial	Credit	The	eory	Prac	tical	Tute	orial	Total
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
02	00	00	02	40	60	00	00			100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- hone English Grammar to use language effectively in everyday life.
- use tenses to
- build vocabulary.
- understand and use Sentence formation and types.
- use comparative degree to express comparison.
- create sentence in active-passive voice.

	Section I				
Module No.	Content	Hours	Weightage in %		
	Parts of Speech – I Types of Nouns				
1.	 Verb Pronoun (personal, possessive) Adverbs 	05	12		
	Adjectives				
2.	 Parts of Speech - II Use of Prepositions of time and place Conjunctions Interjections Articles 'A, An, and The' Indicators- this, that, these, those 	05	13		
3.	 Present and past simple form of 'to be' – am/is/are/was/were Present Tense (all forms) Past Tense (all forms) Future Tense (all forms) 	06	25		

	Section II				
1.	Vocabulary	03	12		
2.	 Auxiliary Verb So, neither-nor, either-or Shall, should, can, could, may, might, must 	03	13		
3.	Types of Sentences Simple, Compound, and Complex sentences Practice of Assertive, Negative, Interrogative, Exclamatory Sentences Question Tag WH' Questions How much' & 'How Many' Reported Speech Active-Passive voice	08	25		

Text Book (s):

Title	Author/s	Publication
High School English Grammar & Composition	Wren & Martin	Blackie ELT Books (An imprint
		of S. Chand Publishing)

Reference Book (s):

Title	Author	Publication
Intermediate English Grammar (Second Edition)	Raymond Murphy	Cambridge University Press
Advanced English Grammar	Martin Hewings	Cambridge University Press

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 25 marks.
- End Semester Examination consists of 60 marks.

Course Outcome(s):

After the completion of the course, students will be able to:

CO 1	Identify and use parts of speech effectively to express them.
CO 2	Understand familiar words related to everyday communication.
CO 3	Use English grammar to communicate effectively.
CO 4	Utilize tenses in real-world communication.
CO 5	Apply various vocabularies to express thoughts.
CO 6	Express comparison effectively.
CO 7	Use active-passive voice and reported speech.

Level of Bloom's Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Grammar & Vocabulary	1,3
2	Listening	2,4,5
3	Speaking	3,6
4	Reading	2,4,5
5	Writing	3,6

21

Course Code: IDSH1040

Course Name: Engineering Mathematics

Prerequisite Course(s): Algebra, Geometry, Trigonometry till 9th Standard level

Teaching & Examination Scheme:

Teaching Scheme(Hours/Week)				Examination Scheme(Marks)						
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Practical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
3	0	2	5	40	60	-	-	50	0	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s)of the course:

To help learners to

- Givea comprehensive coverage at an introductory level to the subject of Functions and Limits, Differentiation, Integration and First Order Differential Equations.
- Recognize importance of differentiation and integration for solving engineering problems.

	Section I						
Module No.	Content	Hours	Weightage in%				
1.	Function sand Limits Introduction, Function, Types of function, Classification of function, Limit of a function, Properties of limit, Standard limits, limit of trigonometric functions.	5	14				
2.	Differentiation Introduction, Differentiation, Geometric meaning, Derivative using first principle, Derivative of standard functions, Working rules, Differentiation of composite function, Differentiation of parametric functions, Differentiation of implicit function, Derivative using logarithms, Successive differentiation, Applications of differentiation (Velocity, Acceleration, Maxima & Minima simple problems).	9	18				
3.	Integration Introduction, Integration of standard functions, Integration by substitution, Integration by parts, Integration using partial fraction, Definite integrals, Theorem on definite integrals, Applications of Integration (Area and Volume simple problems).		18				
4.	Section II 4. Differential Equations of First order and First degree						

	Introduction, Formation of differential equations, Solution of		
	differential equations, Separation of variables, Homogeneous		
	equations, Exact Differential Equations, Integrating factor method,		
	Linear differential equation.		
	Complex Number		
5.	Introduction, Mathematical Operations, Polar form, Modulus,	6	18
	Amplitude Farm, De Movire's Theorem.		
	Statistics		
	Introduction, Central tendency, Mean, Mean of discrete observations,		
6.	Mean of grouped data, Step deviation method, Median, Median for	7	14
	grouped data, Mode, Standard deviation, Standard deviation for		
	Grouped data.		

List of Tutorials:

Sr.No.	ListofTutorial	Hours
1.	FunctionsandLimits-1	2
2.	FunctionsandLimits-2	2
3.	Differentiation-1	2
4.	Differentiation-2	2
5.	Differentiation-3	2
6.	Integration-1	2
7.	Integration-2	2
8.	Integration-3	2
9.	Differential Equations of First order and Firstdegree-1	2
10.	Differential Equations of First order and Firstdegree-2	2
11.	Complex Number-1	2
12.	Complex Number-2	2
13.	Complex Number-3	2
14.	Statistics-1	2
15.	Statistics-2	2

Text Book:

Title	Author(s)	Publication
Advanced Mathematics for Polytechnic	Dr. N. R. Pandya	Macmillan Publication
Engineering Mathematics-3 rd Edition	Anthonycroft & others	Pearson Education Publication

Reference Book:

Title	Author(s)	Publication	
Applied Mathematics for	H.K.Dass	H.K.Dass	
Polytechnics-10 th Edition	II.K.Dass	11.K.Dass	
Applied Mathematics	W.R.Neelkanth	SapnaPublication	
Dolytochnia Mathematica	DaghnandaCD	PuneVidyarthiGruh	
Polytechnic Mathematics	DeshpandeSP	Prakashan,1984	
Polytechnic Mathematics	PrakashD S	SChand,1985	

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests, each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guide lines provided by the Course Coordinator.
- End Semester Examination consists of 60 marks.

Tutorial:

- Continuous evaluation consists of performance of tutorial which will be evaluated out of 10 Marks for each tutorial and average of the same will be converted to 30 marks.
- MCQ based examination consists of 20 marks.

Course Outcome(s):

After the completion of the course, students will be able to:

CO1	Apply differentiation and integration for solving engineering problems.
CO2	Implementing statistical methods for solving real world problems.
CO3	Develop the ability to apply differentiation to significant applied problems.
CO4	Estimate the limiting value of algebraic and trigonometric functions.
CO5	Represent complex numbers algebraically and geometrically for solving engineering related
	problems.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Functions and Limits	1,2,3,4
2	Differentiation	2,3,5
3	Integration	2,3,5
4	Differential Equations of First order and First degree	1,2,3,5
5	Complex Number	1,2,3,4,6
6	Statistics	1,2,3,4,5

Department of Chemical Engineering

Course Code: IDSH1050

Course Name: Fundamentals of Chemistry

Prerequisite Course(s): --

Teaching Scheme (Hours/Week)					Examination Scheme (Marks)					
Theory	Practical	Tutorial	Cutomial Cradit		eory	Prac	ctical	Tute	orial	Total
Theory	ory Fractical Tutorial Credit	rutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
3	2	0	4	40	60	20	30	0	0	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- The student will understand the interdisciplinary nature of chemistry and to integrate knowledge of mathematics, physics and other disciplines to a wide variety of chemical problems.
- The student will understand the importance of the Periodic Table of the Elements, how it came to be, and its role in organizing chemical information.
- The student will acquire a foundation of chemistry of sufficient breadth and depth.

	Section I						
Module.	Content	Hours	Weightage				
No.			in %				
1.	Atomic Structure, Molecular Mass, Acids and Bases Atom Definition Fundamental particles of Atom their Mass, Charge and Location. Atomic number and Mass number, Definition Isotopes and Isobars with suitable examples. Formation of cation and anion by electronic concept of oxidation and reduction.	05	15				
2.	Molecular Mass Molecule, Molecular Formula, Molecular Mass, Mole, Definition Simple calculations. Avogadro's Hypothesis – Relationship between Molecular Mass and vapour Density, Avogadro Number.	05	10				
3.	Chemical Bonding and Structure of Molecules Chemical Bond, Valence, Valence Electrons, Bonding and Non Bonding Electrons, Lewis Symbols, Octet Rule. Definition, Condition for Formation of Ionic Bond, Factors Governing Formation of Ionic Bond, Metallic Bond, Covalent Bond and Co-ordinate Covalent Bond: Hydrogen Bonding,	06	15				
4.	Acids and Bases Theories of Acids and Bases, Arrhenius Theory, Lowry – Bronsted Theory, Lewis Theory, Advantages of Lewis Theory, pH and pOH Definition, Numerical problems, Indicator, Definition and Examples,	06	10				

	Buffer solution, Definition, Types of buffer solution with examples,		
	Application of pH in Industries.		
	Section II		
1.	Solutions Definition, Methods of expressing concentration of a solution Molevity Melelity Nermality Melefraction and Percentage Mass	05	10
	Molarity, Molality, Normality, Mole fraction and Percentage Mass – Simple problems.		
2.	Colloids True solution and Colloidal solution, Definition, Differences, Types of colloids – Lyophilic and Lyophobic colloids. Differences Properties, Tyndall effect, Brownian movement, Electrophoresis and Coagulation. Industrial applications of colloids, Smoke Precipitation by Cottrell's method, Purification of water, Cleansing action of soap, Tanning of leather and Sewage disposal.	06	15
3.	Electrochemistry Electrolyte definition, Strong and Weak electrolytes, Examples. Electrolysis definition, Mechanism, Industrial application of Electrolysis, Electroplating, Preparation of surface, Process Factors affecting the stability of the coating, Chrome plating, Electroless plating definition, Advantages of Electroless plating over electroplating, Applications of Electroless plating.	06	15
4.	Electrochemical-Cell Electrochemical Cell definition, Representation of a Cell, Single Electrode Potential definition, Galvanic Cell, Formation of Daniel Cell, Electrochemical Series, Definition and Significance, Electrolytic Concentration Cell definition and Formation.	06	10

List of Practical

Sr No	Name of Practical/Tutorial	Hours
1.	Using a chemical balance.	02
2.	Introduction to chemistry laboratory – Molarity, Normality, Primary, Secondary	04
	standard solutions, Volumetric titrations, Quantitative analysis, Quantitative analysis	
	etc.	
3.	Demonstration: Preparation of solutions of different concentrations	04
4.	Preparation of standard solution of Oxalic acid.	04
5.	Preparation of standard solution of Sodium Carbonate.	04
6.	Determination of strength of a given solution of Sodium Hydroxide by titrating it	04
	against standard solution of Oxalic acid.	
7.	Determination of strength of a given solution of Hydrochloric acid by titrating it	04
	against standard Sodium Carbonate solution.	
8.	Determination of temporary and permanent hardness in water sample using EDTA	02
	as standard solution.	
9.	Conduct metric titration of strong acid vs. strong base	02

Text Book(s):

Title	Author/s	Publication
Text Book of Engineering Chemistry	Chawla S.	Dhanpat Rai & Co. Pvt. Ltd., Delhi, 2003.
Engineering Chemistry	Sharma B. K.	Krishna Prakashan Media (P) Ltd, Meerut.,2001

Reference Book(s):

Title		Author/s				Publication		
Concise Inorga	anic C	hemistry	J.D	. Lee				Wiley India
Textbook	of	Engineering	R.	Gopalan,	D.	Venkappaya,	S.	Vikas Publishing house Ltd.
Chemistry (4th Edition)		Na	garajan					

Web Material Link(s):

https://onlinecourses.nptel.ac.in/noc21 cy45/preview
https://nptel.ac.in/noc/courses/noc17/SEM2/noc17-cv03/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of performance of Practical which should be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral presentation consists of 15 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, students will be able to:

	are compression or the course, stateones will be able to:
CO1	Implement and evaluate quality control procedures.
CO2	Perform and validate laboratory procedures to conduct tests.
CO3	Improve industrial or chemical processes and laboratory equipment.
CO4	Prepare and purify compounds using standard chemical procedure

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Atomic Structure, Molecular Mass, Acids and Bases	1, 2
2	Molecular Mass	1, 2, 3
3	Chemical Bonding and Structure of Molecules	1, 2, 3
4	Acids and Bases	2, 3, 4
5	Solutions	2, 3, 4
6	Colloids	2, 3, 4
7	Electrochemistry	1, 2, 5
8	Electrochemical-Cell	1, 2, 5

Department of Civil Engineering

Course Code: IDCV1010

Course Name: Engineering Mechanics

Prerequisite Course(s):-

Teaching & Examination Scheme:

Teaching Scheme(Hours/Week)					Ex	aminati	on Schen	ne(Mark	s)			
Theory	Practical Tutorial		Dragtical Tutorial	Dwagtigal Tytopial Chadit	Credit	The	eory	Prac	tical	Tute	orial	Total
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total		
03	02	00	04	40	60	20	30	00	00	150		

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- Understand different types of forces, systematic evaluation of effect of these forces, behavior of rigid and deformable bodies subjected to various types of forces, at the state of rest or motion of the particles.
- Understand behavior of structural element under the influence of various loads.

	Section I		
Module No.	Content	Hours	Weightage
1.	Introduction Engineering Mechanics Basic concepts: Definitions, Basic assumptions, Scalar & Vector quantities, Free, Forced and fixed vectors, Force System: Force, Classification & Representation,	02	10
2.	Coplanar Concurrent Force system Forceasa Vector, Composition of forces, Parallelogram Law, Resolution, Principle of Transmissibility of forces, Resultantofcoplanarforcesystem., Equilibrium of coplanarforcesyste m, Free body diagrams, Determination of reactions, Equilibrium of a body under three forces, Lami's theorem	09	20
3.	Coplanar Non-Concurrent force systems: Moment of a force, Vector representation, Moment for coplanar force system, Varignon's theorem, Couple, Vector representation, Resolution of a force into a force and a couple., force Systems: Coplanar Concurrent Force system and Coplanar Non-Concurrent force system.	09	20
	Section II		

4.	Friction: Introduction, Wet and Dry friction, Theory of Dry friction, Angle of friction, Angle of Repose, Cone of friction, Coulomb's laws of friction.	07	15
5.	Centre of Gravity: Center of Gravity, Center of Mass and Centroid of curves, areas, volumes, Determination of centroid by integration, Centroid of Composite bodies.	09	15
6.	Moment of Inertia: Definition of Moment of inertia of area, Perpendicular axis theorem and Polar moment of Inertia, Parallelax istheorem, Moment of inertia of simple areas by integration, Moment of Inertia of Composite Areas., Moment of Inertia of masses, Parallel axis theorem for mass moment of inertia, Mass moment of inertia of simple bodies by integration, Mass moment of Inertia, for composite Bodies	09	20

List of Practical:

Sr.No.	List of Practical	Hours
1.	Coplanar Concurrent Forces	04
2.	Law of parallelogram	02
3.	Coplanar Non concurrent forces	02
4.	Lami's Theorem	02
5.	Coefficien of staticfriction	02
6.	Parallel force system	02
7.	Numerical practice on Force System	04
8.	Numerical practice on C.G.	04
9.	Numerical practice on M.I.	04
10.	Numerical practice on Friction	04

Reference Book(s):

Title	Author/s	Publication
Applied Mechanics	S. B. Junnarkar & H. J. Shah	Charotar Publication
Engineering Mechanics,	Meriam and Karaige,	Wiley-India
Engineering Mechanics: Statics & Dynamics	S Rajsekaran	Vikas Publication
Engineering Mechanics of Solids	Popov E.P	Prentice Hall of India
Engineering Mechanics,	Meriam and Karaige,	Wiley-India

Course Evaluation:

Theory:

- Continuous evaluation consists of two test search of 15marks and 1 hour of duration.
- Submission of assignment which consists of solving 20 numerical and it carried10 marks of evaluation.
- End semester examination will consist of 60 marks exam.

Practical:

- Continuous Evaluation consists of performance of practical which should be evaluated out of 10marks for each practical and average of the same will be converted to 10 marks.
- Internal viva consists of 10 marks.
- Practical performance/quiz/drawing/test consists of 15marks during End Semester Exam.
- Viva/Oral performance consists of 15marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, students will be able to:

	1
CO 1	Identify fundamental principles of mechanics, equilibrium, statics reactions and internal
	forces in statically determinate beams.
CO 2	Understand the basics of friction and its importance.
CO 3	Apply principles of statics to determine c.g and m.i of a different geometrical shape.
CO 4	Analyse problems and solve the problem related to mechanical elements and analyse the
	deformation behaviour for different types of loads.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction Engineering Mechanics	1,2
2	Coplanar Concurrent Force system	1,2,3
3	Coplanar Non-Concurrent force systems	1,2,3,5
4	Friction	1,2,3,4,5
5	Centre of Gravity	1,2,4,5
6	Moment of Inertia	2,2,4,5

Department of IT Engineering

Course Code: IDIT1010

Course Name: Introduction to Computer Programming

Prerequisite Course (s): NA

Teaching & Examination Scheme:

Teaching Scheme(Hours/Week)					Exa	minatior	Scheme	e(Marks)		
Theory	Practical	Tutorial	Credit	Т	heory	Pr	actical	Tı	utorial	Total
Theory	Flactical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	04	00	05	40	60	40	60	00	00	200

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- Develop understanding of basic concepts that can be used in programming language.
- Develop the algorithm as well as flow chart for particular problem.
- Enforce logical thinking.
- Understand the fundamentals of programming concepts and methodology.

?

	Section I		
Module No.	Content	Hours	Weightage in%
1.	Introduction to Programming Language Classification of Programming Languages, Generations of Programming Languages-Machine Language, Assembly Language, High-Level Language, 4GL.	04	10
2.	Introduction to C, Constants, Variables and Data Types: Features of C Language, the Structure of C Program, Flow Charts and Algorithms Types of Errors, Debugging, Tracing the Execution of the Program, Watching Variables Values in Memory. Character Set, C Tokens, Key word and Identifiers, Constants and Variables, Data Types Declaration and Initialization, User Define Type Declarations –Type of Enum, Basic Input, and Output Operations, Symbolic Constants, Overflow and Under flow of Data.	08	18
3.	Operators, Expressions, and Managing I/O Operations: Introduction to Operators and its Types, Evaluation of Expressions, Precedence of Arithmetic Operators, Type Conversions in Expressions, Operator Precedence and Associatively. Introduction to Reading a Character, Writing a Character, Formatted Input and Output.	06	15
	Section II		

4.	Conditional Statements: Decision Making & Branching: Decision Making with If and If – else Statements, Nesting of If-else Statements, The Switch and go-to statements, Ternary (?:) Operator. Looping: The while Statement, The Break Statement & The Do. While loop, The FOR loop, Jump Within loops-Programs.	07	15
5.	Arrays: Introduction, One-dimensional Arrays, Two-dimensional Arrays, Concept of Multidimensional Arrays.	07	14
6.	Strings: Declaring and Initializing String Variables, Arithmetic Operations on Characters, Putting Strings Together, Comparison of Two Strings, String Handling Functions.	06	14
7.	User-Defined Functions: Concepts of User-defined Functions, Prototypes, function Definition, Parameters, Parameter Passing, Calling a Function, Recursive Function, Macros and Macro Substitution	07	14

List of Practical:

Sr.No	List of Practical			
1.	Introduction to C programming environment, compiler, Linker, loader, and editor. C Program to display "HELLOPPSU"	04		
2.	Working with basic elements of C languages (different input functions, different output functions, different data types, and different operators)	08		
3.	Working with C control structures (if statement, if-else statement, nestedif-else Statement, switch statement, break statement, go to statement)	10		
4.	Working with C looping constructs (for loop, while loop, do-while and nested For loop)	10		
5.	Working with the array in C(1-Darray,and2-Darray)	08		
6.	Working with strings in C (input, output, different string in built functions)	08		
7.	Working with user-defined functions in C (function with/without return type, Function with/without argument, function and array)	08		
8.	Working with recursive function in C	04		

Text Book(s):

Title	Author/s	Publication
Programming in ANSI C	E. Balagurusamy	Tata Mc Graw Hill
Introduction to Computer Science	ITL Education Solutions	Pearson Education
	Limited	

Reference Book(s):

Title	Author/s	Publication
Programming in C	Ashok Kamthane	Pearson
Let UsC	Yashavant P.Kanetkar	TataMcGrawHill
Introduction to C Programming	ReemaThareja	OxfordHigherEducation
Programming with C	ByronGottfried	TataMcGrawHill

Web Material Link(s):

- http://www.digimat.in/nptel/courses/video/106104128/L01.html
- https://www.youtube.com/watch?v=3QiItmIWmOM

Course Evaluation:

Theory:

- Continuous evaluation consists of two test search of 15marks and 1 hour of duration.
- Submission of assignment which consists of solving 20 numerical and it carried 10 marks of evaluation.
- End semester examination will consist of 60 marks exam.

Practical:

- Continuous Evaluation consists of performance of practical which should be evaluated out of 10marks for each practical and average of the same will be converted to 10 marks.
- Internal viva consists of 10 marks.
- Practical performance/quiz/drawing/test consists of 15marks during End Semester Exam.
- Viva/Oral performance consists of 15marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, students will be able to:

CO 1	Infer the basic concepts of data representation, algorithms and coding methods in computer system.
CO 2	Interpret the knowledge about c programming syntax.
CO 3	Apply basic principles of imperative and structural programming to solve complex problems.
CO 4	Design, develop and debug programs of c programming language.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction to Programming Language	1, 2
2	Introduction to C, Constants, Variables and Data Types:	1, 2, 3
3	Operators, Expressions, and Managing I/O Operations	2,3,4,6
4	Conditional Statements	2,4,5
5	Arrays	2, 4,6
6	Strings	2, 4,6
7	User-Defined Functions	2,4,6

Department of Science & Humanities

Course Code: IDSH1060

Course Name: Electrical & Electronics Workshop

Prerequisite Course(s): Concept of Science up to 9th Standard

Teaching & Examination Scheme

Teaching Scheme(Hours/Week)			Examination Scheme(Marks)							
Theory	Dragtigal	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
0	2	0	1	00	00	20	30	0	0	50

Objective(s) of the course:

To help learner to

- Think in core concept of their engineering application by studying various topics involved in branch specific applications.
- Identify basic fundamental electronic components in circuits.
- Learn to use common electronic component to bread board.
- Understand component instruments, terminology and applications.
- Demonstrate the ability to collect and analyze data and to prepare co herent reports of hisorher findings.

Sr.No.	List of Practical	Hours
1	To Understand & Draw the symbols of various electronic devices.	2
2	To identify resistors, capacitors using Different codes.	2
3	Verification of Truth table so f Logic Gates(NAND,NOR,EX-OR,AND,OR,NOT).	4
4	To study cathode ray oscilloscope and perform measurements.	4
5	To study digital multi-meter and perform testing of various components.	2
6	To study soldering-de-soldering techniques.	2
7	To study wiring diagram of ceiling Fan.	2
8	How Fluorescent Lights Work.	2
9	To study about staircase wiring two-way switch.	2
10	Explaining the function of Refrigerator and Air conditioner.	4
11	Explaining the core concept to of power transmission.	4

Evaluation:

- Continuous Evaluation consist so of performance of practical which will be evaluated out of 10 Marks for each practical and average of the same will be converted to 20 marks.
- Internal viva consists of 30marks.

Course Outcome(s):

After the completion of the course, students will be able to:

CO 1	Identify the ability to design various electronic circuit on a bread board
CO 2	Recognize the basic electronic devices and components in a circuit connection.
CO 3	Identify the ability to design a PCB.
CO 4	Define the practical side of basic physics laws.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Electronic Components	1,2,3,4
2	Electronic Devices	1,2,3,4
3	Understanding of Breadboard	1,2,4,5,6
4	Wiring of Breadboard	1,2,4,5,6
5	Ohm's Law	1,2,3,4
6	Rectifiers	1,2,3,5,6
7	KCL & KVL	1,2,3,4,6
8	LDR	1,2,3,6
9	Electricity Lab	1,2,3,4
10	CRO	1,2,4,5
11	PCB	1,2,6

P P Savani University Centre for Language Studies

Course Code: CFLS1040

Course Name: Functional English-II

Prerequisite Course(s): -- CFLS1030 Functional English-I

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)					Ех	caminati	on Schem	ne (Mark	s)	
				The	eory	Prac	tical	Tut	orial	
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
02	00	00	02	40	60	00	00			100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to:

- Understand difference between formal and functional English.
- Use English in daily life.
- Communicate thoughts.
- Be an efficient Listener.
- Be an efficient speaker.
- Sharpen reading skills.
- Improve writing skills.

	Section I		
Module No.	Content	Hours	Weightage in %
1.	Introduction to Functional English	03	10
2.	 Listening Difference between Hearing and Listening Listening to get information Listening to understand Listening instructions to follow 	05	20
3.	 Speaking Introducing Self Expressing likes and dislikes Talking about Family Describing Surrounding Narrating Memorable Incidents Inquiring, Requesting, Ordering, Questioning, Answering 	07	20
	Section II	T	
1.	Reading • Reading to Comprehend	07	25

	Read to Scan		
	Read to Skim		
	 Reading information from authentic material 		
	 Reading Newspaper, Magazines, Books 		
	Writing		
	 Importance of Punctuations 		
	 Strategies to develop Paragraphs 		
2	 Paragraph writing by comprehending pictures, map, 	00	25
۷.	tables, and authentic material	08	25
	 Expressing like, dislikes, experiences 		
	 Narrating stories, incidents 		
	 Writing short letters 		

Text Book (s):

Title	Author/s	Publication	
Communication Skills	ParulPopat&KaushalKotadia	Pearson, 2015	

Reference Book (s):

Title	Author/s	Publication
Communication Skills, Second Edition	Sanjay Kumar, PushpLata	Oxford University Press,2015
Communication Skills for Engineers	Sunita Mishra	Pearson, 2011

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 25 marks. Test one can be based on Reading and Writing Skills whereas Test Two can be based on Listening and Reading Skills.
- End Semester Examination consists of 60 marks.

Course Outcome(s):

After completion of the course, the student will be able to

CO 1	Narrate incidents, events, experiences.					
CO 2	Recognize the difference between formal and functional English.					
CO 3	Comprehend authentic material.					
CO 4	Define the need of Communication Skills in personal and professional life.					
CO 5	Introduce them and talk about family efficiently.					
CO 6	Identify their likes, dislikes, desires effectively.					
CO 8	Practice scanning and skimming.					
CO 9	Use punctuations accurately while writing.					
CO 10	Recall listening skills.					
CO 11	Draft paragraphs, and letters.					

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction to Functional English	2
2	Listening	2,4,5
3	Speaking	3,6
4	Reading	2,4,5
5	Writing	3,6

SECOND YEAR DIPLOMA ENGINEERING

CONTENT

Sr. No.	Content	Page No
1	Syllabi of Third semester	36 to 52
2	Syllabi of Fourth semester	53 to 70

P P SAVANI UNIVERSITY INSTITUTE OF DIPLOMA STUDIES TEACHING & EXAMINATION SCHEME FOR DIPLOMA ENGINEERING PROGRAMME AY:2023-24 Examination Scheme **Teaching Scheme** Course Code Course Title Sem Offered **Contact Hours** Theory Practical Tutorial Bv Cred Total Practical Tutorial Total ESE CE CE ESE CE ESE Theory it IDCH2010 Fluid Flow Operation СН IDCH2021 Industrial Stoichiometry СН Chemical Process IDCH2030 CH n Technology Safety Industrial IDCH2040 CH Environmental Engineering Chemical Engineering CH IDCH2050 Thermodynamics IDME2010 Basic Engineering Drawing ME Total IDCH2060 Mass Transfer-I CH CH IDCH2070 Instrumentation Plant Utilities & Energy IDCH2081 CH Engineering IDCH2090 Mechanical Operation CH IDCH2100 Process Heat Transfer CH IDCH2110 Fertilizer Technology CH **Total**

Department of Chemical Engineering

Course Code: IDCH2010

Course Name: Fluid Flow Operation

Prerequisite Course(s): --

Teaching Scheme (Hours/Week)			Examination Scheme (Marks)							
Theory	Practical	Tutorial	Credit -	Theory		Practical		Tutorial		Total
Theory		Tutoriai		CE	ESE	CE	ESE	CE	ESE	Total
2	4	0	4	40	60	40	60	0	0	200

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- The student will understand the type of fluids
- The student will understand the flow of fluids

Section I					
Module.	Content	Hours	Weightage		
No.			in %		
1.	Introduction to fluids Properties of fluids- Density and viscosity (absolute and kinematic), Vapour pressure and surface tension, cohesion and adhesion, Principle of Hydrostatic Equilibrium Manometers-Types of Manometers (U, Inclined, Differential), Equations, Uses Types of Fluids- Ideal and Actual fluids, Compressible and Incompressible Fluids, Newtonian and Non-Newtonian fluids including time dependent and time independent fluids.	05	15		
2.	Flow of Fluids (Incompressible) Fluid flow, stream line flow, steady and unsteady state flow, uniform and non uniform flow, rotational and irrotational flow. Equation of continuity, Calculation of mass flow rate, volumetric flow rate, average velocity and mass velocity. Bernoulli's Theorem by Euler's equation and its application, Bernoulli's equation for ideal fluid, actual fluid and with pump work done. Correction in Bernoulli's equation.	05	20		
	Section II				
3.	Measurement of flow Measurement of fluid flow with the help of flow meters- Venturimeter: Construction Principle, Working, Coefficient of discharge, Calibration, Derivation, Orifice meter: Construction, principle, Working, Coefficient of discharge, Calibration, Derivation for calculating the flow rates, Rota meter: construction, principle working and Calibration, Pitot tube: Construction, Principle and Working. Nozzle meter: construction, principal working, derivation for calculating flow rates.	05	15		

4.	Pipe, fitting and valves Standard sizes of pipes, wall thickness, Schedule number, BWG Number Joints and fittings, Gate valve, Globe valve, Ball valve, Needle valve, Non return value, Butterfly valve, Diaphragm valve	05	10
5.	Transportation of Fluids Pumps-Centrifugal Pump: Parts of centrifugal pump, working of Centrifugal pump, Performance of centrifugal pump (Characteristics of centrifugal pump), Characteristics curves, priming, Developed Head, Cavitation, Net Positive	05	25
6.	Pump types Suction Head (NPSH) Priming. Positive displacement reciprocating pumps based on pressure component and based on action of piston/plunger, their construction & working, Gear pump, its construction and working, Diaphragm pump, its utility, construction and working, Screw pump, characteristic curve of pump.	05	15

List of Practical

Sr No	Name of Practical/Tutorial	Hours
10.	Determination of coefficient of discharge of venture meter and plot a calibration	02
	curve	
11.	Determination of coefficient of discharge of orifice meter & plot a calibration	80
	curve	
12.	To calibrate a rotameter for different liquids and plot the calibration curve.	80
13.	To perform experiment on Bernoulli's Theorem and prove that the summation	08
	of pressure head, kinetic head and potential head is constant.	
14.	Determination of equivalent length of pipe fittings	08
15.	To plot characteristics curves of centrifugal pump	08
16.	To measure the viscosity of different liquids (Ostwald's Viscometer or Redwood	08
	Viscometer)	
17.	To measure the flow rate of gases using flow meter.	08
18.	To measure the major and minor loses in pipes.	02

Text Book(s):

Title	Author/s	Publication
Unit Operations of Chemical Engineering	McCabe, Smith.	McGraw Hill
Chemical Engineering Volume-1	Richardson & Coulson	Pergamon Press

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of performance of Practical which should be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral presentation consists of 15 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, students will be able to:

CO1	Identify fluid properties and memorize the concepts of pressure
CO2	Classify different types of fluid and generalize the concepts of boundary layer and its
	estimation in different flows
CO3	Apply and demonstrate the basic equations of fluid flow.
CO4	Evaluate and compare the performance of various fluid flowing machinery i.e pumps
	and compressor and metering devices i.e. flow meters.

1: Remember	2: Understand	3: Apply	
4: Analyze	5: Evaluate	6: Create	

Module No	Content	RBT Level
1	Introduction to fluids	1,2
2	Flow of Fluids (Incompressible)	2,3
3	Measurement of flow	2,3,4,
4	Pipe, fitting and valves	2,3,5
5	Transportation of Fluids	3,4,5
6	Pump types	4,5

Department of Chemical Engineering

Course Code: IDCH2021

Course Name: Industrial Stoichiometry

Prerequisite Course(s): -Fundamentals of Chemistry (IDSH1050)

Teaching Scheme (Hours/Week)			Teaching Scheme (Hours/Week) Examination Scheme (Marks)							
Theory	Theory Practical Tutorial		Practical Tutorial Credit	The	eory	Prac	tical	Tut	orial	Total
Theory	Practical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
2	0	2	4	40	60	00	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

• It is expected that this course will lay the foundation of basic knowledge and calculation skills that is frequently used in subsequent chemical engineering courses as well as professional life

	Section I		
Module. No.	Content	Hours	Weightage in %
1.	Unit Systems: Introduction to process calculation, dimensions and systems of units, fundamental quantities of units, derived quantities, definition and units of force, volume, pressure, work, energy, power, heat, unit conversions in FPS, MKS and SI systems	03	10
2.	Basic Chemical Calculations: Definition and calculations of mole, atomic weight, molecular weight, equivalent weight, specific gravity and API gravity. Composition of solid, liquid by weight % and mole %, morality, normality, morality, gm/lit.	04	15
3.	Ideal gas law: Concept of ideal gas, derivation of ideal gas law, definition of STP and NTP, Dalton's law and Amagat's law, derive relation between mole%, volume% and pressure% of ideal gases, calculation of average molecular weight, density, mole%, weight % in gas mixture in SI/MKS systems.	03	15
	Section II		
4.	Material Balance in Processes Without Chemical Reactions: Law of conversation of mass, brief description and simple material balance calculation of drying, distillation, absorption, mixing, crystallization, evaporation, single stage material balance calculation of leaching and extraction, brief idea regarding recycling and by-passing operation.	06	15
5.	Material Balance in Processes Involving Chemical	05	15

	Reactions:		
	Definition: Limiting reactant, excess reactant, conversion, yield		
	and selectivity, simple numerical for finding yield, conversion		
	and composition, simple calculation of material balance based		
	on reaction.		
	Energy Balance:		
	Heat capacity and specific heat, mean heat capacity of gases,		
	heat capacity of gas mixture and liquid mixture, calculations of		
6.	heat capacity by integral equation up to three terms, brief	05	20
0.	explanation of sensible heat and latent heat of fusion,		
	sublimation, vaporization, calculations of standard heat of		
	formation from heat of combustion data, calculations for heat of		
	reaction from heat of formation and heat of combustion data		
	Combustion:		
	Introduction of combustion, types of fuels, calorific values of		
7.	fuels, proximate and ultimate analysis of solid fuel, numerical	04	10
	related to calorific values of fuel from composition, numerical		
	related to air, requirement and composition of flue gases.		

Text Book(s):

Title	Author/s	Publication		
Stoichiometry	Bhatt B.I. and Vora S.M.	Tata McGraw-Hill, 1976		
Basic Principles and Calculations in	Himmelblau David M.	8th Ed., PHI, Eastern		
Chemical Engineering	Riggs B. James	Economy Edition		

Reference Book(s):

Title			Title		Author/s	Publicati	ion
Introduction to Process Calculations		Gavhane K. A.	Nirali Prakashan,				
Stoichiometry			Pune,Yea	r-2012			

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests of 30 marks each and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty Evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination consists of 60 marks.

Course Outcome(s):

After the completion of the course, students will be able to:

	F
CO1	Discriminate the material balance of various process streams.
CO2	Estimate the heat balance of various process steams.
CO3	Assess the heat balance of various process steams.
CO4	Appraise the various properties like temperature, pressure, heat, mass, calorific value.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Unit Systems	1
2	Basic Chemical Calculations	2,3
3	Ideal gas law	1,2,3
4	Material Balance in Processes Without Chemical Reactions	2,3,5
5	Material Balance in Processes Involving Chemical Reactions	2,3,5
6	Energy Balance	4,5
7	Combustion	5,6

Department of Chemical Engineering

Course Code: IDCH2030

Course Name: Chemical Process Technology

Prerequisite Course(s): --

Teaching Scheme (Hours/Week)			Examination Scheme (Marks)							
Theory Practical	Practical	Tutorial Credit	Theory		Practical		Tute	orial	Total	
Theory	Fractical		Credit	CE	ESE	CE	ESE	CE	ESE	Total
2	4	0	4	40	60	40	60	0	0	200

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- The student will understand the type of chemical processes
- The student will understand the basics of chemical process industries

Section I						
Module.	Content	Hours	Weightage			
No.			in %			
1.	Introduction Introduction of Chemical process industries with reference to Indian resources, trade and export potential. Process symbols used for various equipment, Uses of different process equipment	05	15			
2.	Sugar Industry Manufacturer of cane sugar, Various engineering problems encountered in sugar industry, Pollution abatement in sugar industry	05	20			
3.	Fermentation Industry Introduction of fermentation industry, Types of fermentation processes, Production of ethyl alcohol by fermentation, Industrial alcohol, manufacture of industrial alcohol-beers, wines and liquors	05	15			
	Section II					
4.	Soaps and Detergent Industry Manufacturing of soap, glycerin as by products from soap Manufacturing of detergents (including raw material and manufacturing process), Manufacturing of House disinfectants Various engineering problems encountered in soaps and detergent industry	05	10			
5.	Pulp and Paper Industry Different pulping process, Manufacturing of paper, Role of additives, Various engineering problems encountered in paper	05	25			

	industry. Pollution abatement in pulp and paper industry.		
	Polymer Industry		
6.	Types of polymer, polymerization process, manufacture of polyethylene, styrene nylon6, nylon 66, rayon. Manufacture of rubber	05	15

List of Practical

Sr No	Name of Practical/Tutorial	Hours
1	Preparation of Phenyl (domestic disinfectant)	06
2	Preparation of Soap by Coconut Oil	08
3	Preparation of Soap by mustard oil	08
4	Preparation of Detergent/liquid detergent	08
5	Atmospheric distillation of petroleum fraction analysis to petroleum	08
6	Preparation of polymer by Bulk Polymerization.	08
7	Preparation of Thermo Plastics PMMA	08
8	Preparation of phenyl formaldehyde Resin	06

Text Book(s):

Title	Author/s	Publication		
Chemical Technology	M. Gopala Rao	East west publication		

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of performance of Practical which should be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral presentation consists of 15 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, students will be able to:

	r
CO1	Identify and describe basic equipment used in process industries.
CO2	Explain the basic process industry drawings.
CO3	Demonstrate the ability to apply basic concepts of chemistry and physics within process
	industries.
CO4	Correlate the importance of quality, safety, health and environment to the process
	industry.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction	1
2	Sugar Industry	2,3
3	Fermentation Industry	2,3,4,
4	Soaps and Detergent Industry	3,5,6
5	Pulp and Paper Industry	3,5,6
6	Polymer Industry	3,5,6

Department of Chemical Engineering

Course Code: IDCH2040

Course Name: Industrial Safety & Environmental Engineering

Prerequisite Course(s): --

Teaching Scheme (Hours/Week)					Ех	kaminati	on Schen	ne (Marl	rs)		
Theory Practical	al Tutorial Credit		Practical Tutorial Credit		The	eory	Prac	tical	Tute	orial	Total
Theory	Fractical	Tutoriai	Credit -	CE	ESE	CE	ESE	CE	ESE	Total	
1	0	0	1	00	00	20	30	0	0	50	

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- knowledge of different types of pollution caused due to industrialization.
- Know various types of accidents which occur in chemical plants and how to safeguard them to avoid injury to men and material.

	Section I					
Module.	Content	Hours	Weightage			
No.			in %			
	General Introduction & Concept of Safety:					
1.	Safety of organization, Safety measures Concept & Importance of	01	10			
	safety in chemical industries.					
	Chemical & Fire Hazards & their Control:					
_	Definition, sources & classification of hazards like chemical, fire,					
2.	Different methods for controlling chemical & fire hazards,	04	25			
	Objective & importance of fire prevention, fire extinguishing					
	agents & devices with their working.					
2	Personal Protective Devices:	01	10			
3.	Protective devices for head, ears, eyes, face, respiratory system,	01	10			
	hand, feet etc. Section II					
	·					
	Introduction to pollution: Introduction to environmental pollution, sources of pollutants,					
4.	effects of pollution on human health, vegetation, animal life &	02	15			
	effect on environment.					
	Air Pollution:					
	Sources & Types of air pollutant, classification, properties of air					
5.	pollutant, effect of air pollution, Air pollution control methods	03	20			
	like gravitational settling, Diffusion, Electrostatic precipitation,		-			
	Centrifugal impaction, Direct interception etc.					
	Water pollution:					
6.	Introduction, characterization of water, BOD, COD, VM, SM,	02	10			
	classification of sources.					

Ī		Solid waste of disposal methods:		
	7.	Sources of classification, Methods of disposal like dumping,	02	10
		sanitary land filling, incineration, composting etc.		

Text Book(s):

Title	Author/s	Publication
Environmental Pollution control engineering	C. S. Rao	New Age International
		Publications.

Reference Book(s):

Title	Author/s	Publication
Fundamentals of air & water pollution	P. C. Mishra	APH Publishing 2008
Pollution Control in process Industries	S. P. Mahajan	TMH Publication
Safety management	John V. Grimaldi	Richard D. Irwin; 4th Edition

Course Evaluation:

Practical:

- Continuous Evaluation consists of performance of Practical which should be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- $\bullet \quad 30 \ marks \ for \ the \ Report \ submission \ based \ on \ technical \ visit \ at \ one \ chemical \ industry.$

Course Outcome(s):

After the completion of the course, students will be able to:

CO1	Identify instrument for the p, t, v measurement of given parameter.
CO2	Identify the causes of accident and explain various controlling methods.
CO3	Acquainted with the principles of environment & ergonomics.
CO4	Familiarise with process safety management (psm) as per osha

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	General Introduction & Concept of Safety:	1,2
2	Chemical & Fire Hazards & their Control:	2,3
3	Personal Protective Devices:	2,3,4
4	Introduction to pollution:	1,2
5	Air Pollution:	2,3,5
6	Water pollution:	2,3,5
7	Solid waste of disposal methods:	1,2,3,5

Department of Chemical Engineering

Course Code: IDCH2050

Course Name: Chemical Engineering Thermodynamics

Prerequisite Course(s): --

Teaching Scheme (Hours/Week)		Teaching Scheme (Hours/Week) Examination Scheme (Marks)								
Theory	Dragtigal	Tutorial	Credit	The	eory	Prac	tical	Tute	orial	Total
Theory	Practical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
3	0	2	4	40	60	00	00	50	0	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

It is a core subject of Chemical Engineering and is essential for understanding basic concepts, thermodynamic properties of fluid and performance of thermal systems used in industry.

Section I				
Module.	Content	Hours	Weightage	
No.			in %	
1.	Introduction and Basic Concepts Systems, processes and surroundings, homogenous and heterogeneous systems, closed, open and isolated, intensive and extensive properties, state and path functions. Concept of internal energy, enthalpy, entropy, free energy and equilibrium equation of state, ideal gas law, Vander Waals equation. Amagat's law, Dalton's law, Henry's law, Zeroth law of thermodynamics.	08	25	
2.	First Law of Thermodynamics for Open and Closed System Statement of first law of thermodynamics, use of steam tables, calculation of internal energy, enthalpy, heat and work for ideal gas undergoing reversible, isothermal, Isobaric, adiabatic and polytrophic process. T-V, P-V and P-T diagrams.	08	10	
3.	Second Law of Thermodynamics Statement of second law of thermodynamics: Kelvin Plank statement and Classius statement, Carnot cycle and its efficiency, concept of entropy and entropy change for closed and open system. Heat pump and heat engine (coefficient of performance and efficiency). Reversible and irreversible process. Thermodynamic temperature scale. Thermal thermodynamic equation, Maxwell relation. Third Law of Thermodynamics	08	15	
	Section II			
4.	Entropy Inequality of Classius, entropy-a property of a system entropy	06	15	

	change in reversible process, entropy change for an open system, principle of increase of entropy, efficiency, irreversibility.		
	Applications of Second law of Thermodynamics Refrigeration, vapor compression and absorption refrigeration		
5.	cycle, air refrigeration cycle, types of compressors, reciprocating air compressor, single stage compressor, and isentropic efficiency of compressor, coefficient of performance(COP), liquefaction process, latest refrigerants- their qualities and applications.	07	15
6.	Chemical Reaction Equilibrium and Vapor Liquid Equilibrium Concept of chemical potential, Gibb's Duhen Equation, Raoul's law, Gibb's phase rule, vapor liquid equilibrium, dew point and bubble point, calculations for two component systems, fugacity, fugacity, fugacity coefficient, activity and activity coefficient.	08	20

Text Book(s):

Title	Author/s	Publication
Chemical Engineering Thermodynamics	K.A. Gavhane	Nirali
		Publication
Chemical Engineering Thermodynamics	Dodge	McGraw Hill

Reference Book(s):

Title	Author/s	Publication
Chemical Engineering	K.V. Narayanan	Prentice Hall India
Thermodynamics		
Engineering	PK Nag	McGraw Hill
Thermodynamics		

Web Material Link(s):

http://nptel.ac.in/courses/103106070/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of performance of Practical which should be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral presentation consists of 15 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, students will be able to:

CO1	Illustrate the application of first law and second law to the problem of phase
CO2	Estimate the efficiency of heat equipments for a given duty.
CO3	Distinguish systems, functions, properties and processes.
CO4	Implement the various law of thermodynamics for non flow & flow process and access
	the pvt behavior of the fluids.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction and Basic Concepts	1,2
2	First Law of Thermodynamics for Open and Closed	1,2,3
	System	
3	Second Law of Thermodynamics	2,3,4,
4	Entropy	2,4,5
5	Applications of Second law of Thermodynamics	2,5,6
6	Chemical Reaction Equilibrium and Vapor Liquid	2,3,5,6
	Equilibrium	

Department of Mechanical Engineering

Course Code: IDME2010

Course Name: Basics of Engineering Drawing

Prerequisite Course(s):--

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Teaching Scheme (Hours/Week) Examination Scheme (Marks)							
Tl	Practical Tutorial	Tutorial	Cwadit	The	eory	Prac	ctical	Tut	orial	Total
Theory		actical Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
02	04	00	06	50	00	100	00	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- Understand the language and familiarize with Indian Standards related to engineering drawings
- Develop drafting and sketching skills, application of drawing equipment's.
- Read various engineering curves, projections and dimensioning styles.

	Section I						
Module No.	Content	Hours	Weightage in %				
1.	Introduction BIS SP-46, Drawing Instruments and their uses, Letters and numbers– Standard Sizes and Layout of drawing sheets-Types of lines and their applications- Different types of Dimensioning techniques, Scale (reduced, enlarged & full size), plain scale and diagonal scale, Geometrical constructions.	04	14				
2.	Orthographic projections of points and lines: Introduction to orthographic projection, First angle and Third angle method, their symbols. Conversion of pictorial view into Orthographic Views – object containing plain surfaces, slanting surfaces, slots, ribs, cylindrical surfaces. Projections of points Projections of lines in different quadrants, inclinations, True lengths of the lines projections on auxiliary planes	10	34				
3.	Projections of plane figures: Different cases of plane figures (of different shapes) making different angles with one or both reference planes and lines lying in the plane figures making different given angles (with one or both reference planes). Section II	05	15				
4.	Projection of solids: Types of Solid. Projection of Cone, Cylinder, Prism &pyramids. Simple cases when solid are placed in different positions Axis faces and tines lying in the faces of the solid making given angles.	06	22				
5.	Introduction to isometric projections. Isometric scale and Natural scale. Isometric view and isometric projection. Illustrative problems related to objects containing lines, circles and arcs shape only	05	15				

List of Practical:

Sr No	Name of Practical	Hours
1.	Letters and numbers, Dimensioning techniques, Scale (reduced, enlarged &	
1.	full size), plain scale and diagonal scale, Geometrical constructions.	02
2.	Orthographic projections of points and lines:	15
3.	Projections of plane figures	15
4.	Projection of solids	12
5.	Isometric projection	16

Text Book(s):

Title	Author/s	Publication
A Text Book of	P J Shah	S. Chand & Company Ltd.,
Engineering Graphics		New Delhi
Engineering Drawing	N D Bhatt	Charotar Publishing
		House, Anand

Reference Book(s):

Title	Author/s	Publication					
Engineering Drawing	P.S.Gill	S. K. Kataria& sons, Delhi					
Engineering Drawing	B. Agrawal & C M Agrawal	Tata McGraw Hill, New Delhi					
Engineering Drawing made Easy	K. Venugopal	Wiley Eastern Ltd					

Web Material Link(s):

• http://nptel.ac.in/courses/105104148/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 20 marks as per the guidelines provided by the course coordinator.

Practical:

- Continuous Evaluation consists of Performance of Practical/Tutorial which will be evaluated out of 10 for each practical/Tutorial and average of the same will be converted to 20 Marks.
- Internal Viva consists of 30 Marks.
- Practical performance/quiz/drawing/test of 50 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, students will be able to:

111001 0110 0011	producti of the course, statements i'm so asie to:			
CO1	Interpret engineering drawing as a techincal comuunication language.			
CO2	Understand different dimensioning methods and its use in drawings.			
CO3	Relate the use of engineer's scale to different engineering fields.			
CO4 Identify the use of orthographic & isometric projection in real time applications.				

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction	1,2
2	Orthographic projections of points and lines	1,5,6
3	Projections of plane figures	2,4,6
4	Projection of solids	2,4,6
5	Isometric projection	2,5,6

Department of Chemical Engineering

Course Code: IDCH2060 Course Name: Mass Transfer - I Prerequisite Course(s): --

Teaching Scheme (Hours/Week)				Ех	kaminati	on Schen	ne (Marl	rs)		
Theory	Practical	Tutorial	Гutorial Credit -		Theory		tical	Tute	orial	Total
		Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
2	4	0	4	40	60	40	60	0	0	200

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- gain knowledge of basic fundamentals of mass transfer operations such as diffusion, leaching, absorption etc.
- gain knowledge of fundamental principles, design aspects, equations, associated problems, industrial applications of all-important unit operations.
- equip them with the essential knowledge and skills required to appear in campus interview or work as an engineer in the chemical industries with confidence.

Section I					
Module.	Content	Hours	Weightage		
No.			in %		
	Introduction:				
1.	Importance of mass transfer operations, classification of mass-	02	10		
1.	transfer operations, methods of conducting mass transfer	02	10		
	operations and fundamental design principles.				
	Molecular Diffusion Of Fluids:				
	Concept of molecular and eddy diffusion, Fick's law for diffusion,				
2.	general equation for steady-state molecular diffusion in fluid	05	15		
	within laminar flow, thermal diffusion, simple problems on				
	diffusion by direct use of formula.				
	Inter phase Mass Transfer:				
	Concept of equilibrium, local and average overall mass transfer				
3.	coefficient, film theory, penetration theory, analogy between	05	20		
	mass and momentum transfer and concept of stage, stage				
	efficiency, cascade etc.				
	Section II				
	Gas Absorption:				
	Definition and application of absorption, equilibrium solubility				
4.	of gases in liquids, effect of temperature and pressure on	06	20		
	solubility, characteristics of ideal liquid solutions of Raoult's				
	law, choice of solvents, material balance for the component				

	transfer in countercurrent and concurrent flow, concept of		
	HETP and simple problems on absorption.		
	Liquid-Liquid Extraction:		
	Definition and application of liquid extraction, liquid		
	equilibrium for three component system, equilibrium triangular		
5.	coordinates, system of three liquids one pair	05	15
	partially soluble, effect of temperature and pressure on the		
	solubility curve, choice of solvents for the operation, simple		
	problems using direct formula.		
	Leaching:		
	Definition and industrial application of leaching, preparation of		
6.	solid, methods of operations and equipment for in place	04	10
0.	leaching and heap leaching, shanks system, filter press leaching	04	10
	and equipment like Rotacel, Kennedy extractor and Balloman		
	extractor.		
	Equipment for Gas-Liquid Operation:		
	Construction and working of gas dispersed equipment like		
7.	bubble column (Sparged vessel), agitated vessel, tray tower etc.	03	10
	and liquid dispersed equipment like venturi scrubbers, wetted	03	10
	wall column, spray tower, packed tower and comparison		
	between tray and packed tower.		

List of Practical

Sr No	Name of Practical/Tutorial	Hours
1.	Solid In Air Diffusion (Vaporization Of Naphthalene Balls)	08
2.	Vapour In Air Diffusion - To determine the diffusion coefficient of an	08
	organic vapor (i.e. CCl4) in air.	
3.	Liquid - Liquid Diffusion - To study the effect of temperature on the	08
	diffusion coefficient.	
4.	York Scheibel's Extraction Unit	08
5.	Absorption in sieve plate column	08
6.	Vapor-Liquid Equilibrium Set-up	08
7.	Leaching Experiment	08
8.	Wetted Wall Column Experiment	04

Text Book(s):

Title	Author/s	Publication
Mass Transfer operation	R.E. Treybal	Mc-Graw Hill International Editions
Mass Transfer	Sherwood, Pigford & Wilke	Mc-Graw Hill International Editions

Reference Book(s):

Title	Author/s	Publication	
Perrys Chemical Engineers	Perry & Green	Mc-Graw Hill International Editions	
Handbook			
Chemical Engineering	Coulson, J.M., Richardson, J.F.	Pergamon and ECBS, 1970	
Unit operations of	W.L. McCabe, J.C. Smith	Mc-Graw Hill International Editions	
Chemical Engg.	&Harriott		

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests of 30 marks each and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty Evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consist of performance of Practical which should be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 mark.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral presentation consists of 15 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, students will be able to:

CO1	Distinguish the basics of mass transfer & important to build a knowledge of the mass
	regarding laws.
CO2	Identification of mechanisms of mass transfer, formulation of rate equations.
CO3	Evaluate the solutions of the differential equations for steady state & non steady state problems.
CO4	Generalize various mass transfer equipments.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction	1,2
2	Molecular Diffusion Of Fluids	1,2
3	Inter phase Mass Transfer	1,2
4	Gas Absorption	2,3,4
5	Liquid-Liquid Extraction	2,5,6
6	Leaching	3,4,5
7	Equipment for Gas-Liquid Operation	3,5,6

Department of Chemical Engineering

Course Code: IDCH2070 Course Name: Instrumentation Prerequisite Course(s): --

Teaching Scheme (Hours/Week)				Ех	aminati	on Schen	ne (Marl	rs)		
Theory	Practical	ctical Tutorial Credit		The	eory	Prac	tical	Tute	orial	Total
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
2	4	0	4	40	60	40	60	00	00	200

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

• It is expected that this course will lay the foundation of basic knowledge about instrumentation skills that is frequently used in subsequent chemical engineering courses as well as professional life.

Section I					
Module. No.	Content	Hours	Weightage in %		
1.	Introduction to Instrumentation: Elements of instruments, static and dynamic characteristics, basic concepts of response of first order type instruments, mercury in glass thermometer, bimetallic thermometer, pressure spring thermometer, static accuracy and response of thermometers.	03	10		
2.	Pressure Measurement: Pressure, vacuum and head manometers, measuring elements for gage pressure and vacuum, measuring pressure in corrosive liquids, measuring of absolute pressure, static accuracy and response of pressure gages.	04	15		
3.	Temperature Measurement: Industrial thermocouples, thermocouple wires, thermo couple wells and response of thermocouples.	06	20		
	Section II				
4.	Flow Measurement: Head flow meters, open channel meters, area flow meters, flow of dry materials, viscosity measurement.	06	20		
5.	Level Measurement: Direct measurement of liquid level, level measurement in pressure vessels, measurement of interface level, level of dry materials.	05	15		
6.	Instruments for Analysis: Recording instruments, indicating and signaling instruments, instrumentation diagram.	06	20		

List of Practical:

Sr. No.	Name of Practical	Hours
1	Study and use Pressure sensing elements.	08
2	Study and use Flow measuring instruments.	08
3	Study and use level measuring instruments.	08
4	Study and use temperature measuring instruments.	08
5	Study block diagram of DCS.	08
6	Study block diagram of PLC.	08
7	Study applications of controllers.	06
8	Verify Ohm's law.	06

Text Book(s):

Title	Author/s	Publication
Industrial instrumentation	Donald P Eckman	John Wiley and Sons Ltd, 1950
Industrial Instrumentation &	S. K. Singh	McGraw Hill Education India, 1987
Control		

Reference Book(s):

Title		Author/s	Publication
Process	Control	Johnson	John Wiley & Sons; 3rd edition (26
Instrumentation Technology			October 1988)

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests of 30 marks each and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty Evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination consists of 60 marks.

Course Outcome(s):

After the completion of the course, students will be able to:

CO1	Apply the fundamentals of instrumentation in measurements and calibration of
	instruments.
CO2	Summarize information about common instruments on the chemical process systems.
CO3	Generalize the pressure, temperature & level instrument for the measurement of chemical devices.
CO4	Illustrate the construction and working principle of various type of transducers/sensor to measure physical quantities.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction to Instrumentation	1,2
2	Pressure Measurement	1,2,3
3	Temperature Measurement	1,2,3
4	Flow Measurement	1,3,4
5	Level Measurement:	2,3,4
6	Instruments for Analysis:	3,4,5

Department of Chemical Engineering

Course Code: IDCH2081

Course Name: Plant Utilities & Energy Engineering

Prerequisite Course(s): -Industrial Safety & Environmental Engineering (IDCH2040)

Teaching Scheme (Hours/Week)		Examination Scheme (Marks)								
Theory	eory Practical Tutorial		utorial Credit	The	eory	Prac	tical	Tut	orial	Total
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
2	0	0	1	40	60	00	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- Know renewable source of energy and their futuristic scope.
- Understand the designing the process plants or creating design layouts of plant.
- Understand fundamentals of chemical engineering viz. development of flow diagrams, importance of various design consideration during the development and design of any process.
- Rapidly increase advancement of knowledge and relevant importance and application of various process auxiliaries and utilities used in industries.
- Deals with the basics as well as advanced understanding of various process auxiliaries and utilities used in chemical plant.

Section I			
Module.	Content	Hours	Weightage
No.			in %
1.	Introduction: Types of energy, energy crisis, Renewable sources of energy, conventional & Non-Conventional sources of energy, energy conservation.	02	10
2.	Conventional fuels: Classification, types, sources, properties, uses, storage, handling & selection factors of various conventional fuels in the form of a. Solid: Coal, Lignite, Coke b. Liquid: Gasoline, Kerosene, Naphtha, Fuel oil, Diesel c. Gaseous: N.G., Refinery gas, Water gas, Producer gas, Coke oven gas, LPG, Oil gas, Industrial Gases etc	06	20
3.	Non-conventional sources of energy: Solar energy: Solar radiation, collectors, storage & applications Wind energy: Introduction, nature of wind & wind farm Biomass energy: Introduction, Biomass conversion technology by wet & Dry process Geothermal energy: Introduction & Sources of geothermal energy.	07	20

	Nuclear energy : Introduction, Nuclear Fuels & Nuclear					
	reactions, types of Propellant & moderators					
	Section II					
	Water & Steam:					
	Importance, Consumption & source of water, water analysis,					
	types of hardness, methods of softening of water like lime soda,					
	zeolite, ion exchange methods etc., Purification of water by					
4.	screening, sedimentation, coagulation, filtration & sterilization,	08	25			
	treatment for boiler feed water, Reuse & Recycling of process					
	water, definition of enthalpy, wet steam, superheated steam,					
	specific volume, Types-classification &comparison of steam					
	generators, Factors affecting the selection of steam generator.					
	Air & Refrigeration:					
	Introduction, use of air as chemical raw material & utility,					
	concept of compressed air, blower air, fan air, instrument air					
5.	etc., various methods of refrigeration in brief like ice, evaporate,	07	25			
	vapor, steam jet refrigeration etc, types of refrigerating agent					
	like ammonia, carbon dioxide, methylene chloride, water brine					
	etc., selection of refrigerating agents.					

Text Book(s):

Title	Author/s	Publication	
Process Plant layout and	Roger Hunt and Ed	PTR Prentice-Hall Inc	
Piping Design	Bausbacher	FIRFIEITICE-Hall IIIC	
Process utility systems	Jack Broughton	Institution of Chem. Engineers, U.K.	

Reference Book(s):

Title	Author/s	Publication	
Chemical Engineering Plant	F.C. Vibrandt and C.E.	McGraw Hill, Fifth Edition.	
Design	Dryden		
Plant design and Economics	M.S. Peters and	Mc Graw Hill 3rd Edition	
for Chemical Engineers	Timmerhaus		

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests of 30 marks each and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty Evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination consists of 60 marks.

Course Outcome(s):

After the completion of the course, students will be able to:

Tirter the con	ipiction of the course, students will be able to:
CO1	Assess the basis of plant utilities and management process.
CO2	Justify the importance of process auxiliaries and utilities in a chemical industry.
CO3	Editorialize the conventional and non conventional sources and their utilization in
	industries.
CO4	Acquire an overview of key selection considerations of plant utilities.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction	1,2
2	Conventional fuels	1,2,3
3	Non-conventional sources of energy	1,2,3
4	Water & Steam	2,3,4
5	Air & Refrigeration	4,5,6

Department of Chemical Engineering

Course Code: IDCH2090

Course Name: Mechanical Operations

Prerequisite Course(s):--

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Examination Scheme(Marks)						
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tute	torial	Total
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
02	04	00	04	40	60	40	60	00	00	200

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- Understand many basic principles of Chemical Engineering operations such as Size Reduction, Filtration, Sedimentation, Mixing and Agitation etc. and their mathematical co-relation.
- Understand the basic principles of particle preparation and their characterization.
- Study various methods for storage of solids and conveyors available for their transportation.
- Understand the performance of different equipment for separation of solids and size reduction

Section I										
Module No.	Content	Hours	Weightage in%							
1.	Properties of Particulate Solids Fundamentals of Unit operation and Unit process, Specific properties of solids: Particle density and Bulk density, diameter, sphericity, equivalent diameter, specific surface area, volume surface mean diameter, mass mean diameter, and shape factor, Calculation of particle diameter, sphericity, equivalent diameter, specific surface area, volume surface mean diameter, mass mean diameter, and shape factor, numbers of particles in solid.	06	20							
2.	Screen Analysis Basics of Ideal and actual screen, Types of screen analysis, Capacity and effectiveness of screen, Derivation of formula for overall effectiveness of screen, Calculation of capacity and effectiveness of screen.		10							
3.	Size Reduction Principles of Size reduction and its application, Classification, comparison and selection of size reduction equipments based on size reduction principle, Laws of size reduction: (i) Rittingers law (ii) Bond's law (iii) Kick's law, Calculation of power required for size reduction using empirical laws.	04	15							

	Section II		
4.	Sedimentation Fundamentals of sedimentation, Batch sedimentation, Interphase height Vs time curve for Batch sedimentation, Principle of flocculation, Principle, construction and working of Gravity thicker, Fundamentals of free and hindered settling, Principle construction and working of Cyclone separator.	04	15
5.	Filtration Basics of filtration, Classification of equipments for liquid-solid separation, Filter media and its characteristics, Constant rate filtration and constant pressure filtration, Filter media and its characteristics.	04	10
6.	Separation of Solid Particles Definition and application of solid separation, Factors affecting selection of equipment for solid separation, Working principle and construction of a) Jigging, b) Elutriation, c) Double cone classifier d) Electrostatic precipitator, e) Magnetic separator f) Froth flotation cell, Differential settling methods, sink and float method		15
7.	Agitation and Mixing Define agitation and mixing, give their applications, Classification of Impellers and brief explanation, Vortex formation and swirling, Methods of Vortex prevention, Flow number, Factors affecting agitation.	04	15

List of Practical:

Sr. No.	Name of Practical	Hours
1	Measure volume surface mean diameter, mass mean diameter, number of	06
	particles using sieve shaker	
2	Carry out differential and cumulative screen analysis	06
3	Test Rittinger's law for grinding in ball mill and measure critical speed	06
4	Test Kicks law for crushing in jaw crusher	06
5	Test Bond's law for crushing in roll crusher	06
6	Measure efficiency of cyclone separator	06
7	Determine rate of settling by sedimentation	06
8	Measure rate of filtration in gravity filtration	06
9	Measure efficiency of separation in froth flotation cell	06
10	Measure rate of filtration in vacuum filtration	06

Text Book(s):

Title	Author/s	Publication
Unit Operations of Chemical	W L McCabe and J C Smith McGraw-Hill International	
Engineering		
Principles of Mineral Dressing	A M Gaudin	Tata McGraw-Hill Publishing Co.
		Ltd., New Delhi

Elements of Ore Dressing A F Taggart John Wiley and Sons, New York	Elements of Ore Dressing	A F Taggart	John Wiley and Sons, New York
--	--------------------------	-------------	-------------------------------

Reference Book(s):

Title	Author/s	Publication
	J.M. Coulson & J.F. Richardson	Elsevier, 2003 or Pergamon Press
Unit Operations	G.G. Brown Ed.	John Wiley & Sons, 1950
Transport Processes and Separation Process Principles' 4th Ed,	-	Prentice Hall India, 2003

Web Material Link(s):

• http://nptel.ac.in/syllabus/103107091

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests of 30 marks each and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty Evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination consists of 60 marks.

Tutorial:

- Continuous Evaluation consist of performance of Practical which should be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral presentation consists of 15 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, students will be able to:

CO1	Identify the practical importance and relevance of unit operations used for crushing,
	grinding and size separation in chemical industry.
CO2	Understanding fluid flow through fluidized bed
CO3	Evaluate the parameters of various filtration equipment and sedimentation.
CO4	Identify the different types of mixing, agitation and conveying of solids.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Properties of Particulate Solids	1,2
2	Screen Analysis	2,3
3	Size Reduction	2,5
4	Sedimentation	2,3,4,5
5	Filtration	4,5,6
6	Separation of Solid Particles	3,4,5
7	Agitation and Mixing	2,3,4,6

Department of Chemical Engineering

Course Code: IDCH2100

Course Name: Process Heat Transfer

Prerequisite Course(s): --

Teaching Scheme (Hours/Week)				Ex	aminati	on Schen	ne (Marl	rs)		
Theory	Practical	Tutorial	Credit	The	eory	Prac	tical	Tute	orial	Total
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
2	4	0	4	40	60	40	60	00	00	200

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- Understand how to formulate and be able to solve one- and two-dimensional conduction.
- Most of the Chemical Engineering operations will involve either heat addition or heat removal in one way or the other.
- It is, therefore, extremely necessary to have good understanding about the heat transfer mechanisms.
- This subject enables the students to apply this knowledge for understanding the performances of various heat transfer equipment such as heat exchangers, condensers, evaporators etc. used in almost all chemical and related industries

	Section I				
Module.	Content	Hours	Weightage		
No.			in %		
	Modes of Heat Transfer				
1.	Conduction, Convection, Radiation, concept of steady state and	05	10		
	unsteady state heat transfer.				
	Conduction				
2.	Fourier's law of heat conduction, thermal conductivity of materials – solids, liquids and gases and effect of temperature on thermal conductivity, one dimensional steady state heat conduction through a plane wall, composite wall and cylinder, multi-layer cylinder. Insulation and insulating materials, critical thickness of insulation.	05	15		
3.	Convection Natural and forced convection, dimensional analysis and significance of various dimensional groups such as Reynolds number, Prandtl number, Nusselt number, Grasshof number, Stanton number. Peclet number, empirical correlations for free and forced convection. Dittus Boelter's equation, Sieder Tate Equation, simple numerical problems using Dittus Boelter equation, Sieder Tate equation.	05	15		

	Radiation		
	Reflection, absorption and transmission of thermal radiation,		
4.	Emmisive power, Wein's displacement law, Stefan Boltzmann	04	10
	Law, Planck's law, Kirchhoff's law, Concept of black body,		
	Grey body.		
	Section II		
	Heat Exchanger		
	Introduction, classification, individual and overall heat		
	transfer coefficient, fouling factor, roughness of surfaces and		
5.	their effect, LMTD for parallel and counter current heat	04	20
	exchangers, construction and description of:- Concentric		
	double pipe, Shell and tube (1-1 heat exchanger and 1-2 heat		
	exchanger), Plate type heat exchanger.		
	Boiling and condensation		
6.	Interface, bubble and film boiling, boiling regime, Concept of	02	15
	condensation, types of condensation i.e. drop wise and film	02	10
	wise condensation.		
	Evaporators		
7.	Evaporation Capacity, Evaporation Economy, construction and		
	description of open pan, long type vertical evaporator, falling	05	15
	film evaporator and agitated thin film evaporator, multiple		
	effect evaporator, feeding arrangements- forward, backward,		
	mixed and parallel feed.		

List of Practical

Sr No	Name of Practical/Tutorial	Hours
1.	To determine Heat Transfer through Composite Wall at different	04
	temperature.	
2.	Determination of Thermal Conductivity of Insulating Powder (Asbestos	08
	Powder).	
3.	To find out Heat transfer in Double Pipe Heat Exchanger in Laminar	08
	Flow and Turbulent Flow.	
4.	Calculation of Heat transfer Coefficient by Natural and Forced Convection.	08
5.	Heat Transfer Calculation in Plate Heat Exchanger.	08
6.	Shell and Tube Heat Exchanger.	08
7.	Heat Transfer by Radiation: Stefan-Boltzmann Law.	08
8.	Heat Transfer in Drop and Film wise Condensation Apparatus.	08

Text Book(s):

Title	Author/s	Publication
Heat Transfer Principles and	K Dutta	Prentice Hall, India.
Applications		
Heat Transfer	KA Gavahane	Nirali Publications.

Reference Book(s):

Title	Author/s	Publication
Heat Transfer: Principles and	Dutta B. K	PHI
Applications		
Heat Transfer	Chapman, A.J.	Maxwell Macmillan
		International Edition, 1984.

Web Material Link(s):

https://nptel.ac.in/courses/103103032/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of performance of Practical which should be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral presentation consists of 15 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, students will be able to:

THECH CHIC COM	procion of the course, students will be usic to
CO1	Classify and solve conduction, convection and radiation problems
CO2	Remembering the design and analyze the performance of heat exchangers.
CO3	Discriminate the design and analyze heating and cooling systems.
CO4	Validate the heat loss around various equipments.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Modes of Heat Transfer	1
2	Conduction	2,3
3	Convection	2,3,5
4	Radiation	3,4,5
5	Heat Exchanger	2,3,5
6	Boiling and condensation	3,4,5
7	Evaporators	3,4,6

Department of Chemical Engineering

Course Code: IDCH2110

Course Name: Fertilizer Technology

Prerequisite Course (s): --

Teaching & Examination Scheme:

	6 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1									
Teaching Scheme (Hours/Week)				Exa	minati	on Schei	ne (Mai	rks)		
Theory	Theory Practical Tutoria	Tutorial	Credit	The	eory	Prac	ctical	Tuto	orial	Total
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
02	00	02	04	40	60	00	00	20	30	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- identify different types of fertilizers and their applications for crops
- provide comprehensive and balanced understanding of essential link between chemistry and the synthetic fertilizer industry
- understand the manufacturing of fertilizers based on different nutrients

	Section I		
Module No.	Content	Hours	Weightage in%
1.	Overview of Fertilizers Synthetic fertilizers, Classification of fertilizers, Role of essential Elements in plant Growth, Macro elements and Micro elements, Application of fertilizers considering Nutrient, Balance and types of crop	05	15
2.	Nitrogenous Fertilizers Ammonia: Physical, chemical properties and applications, Synthesis gas by Catalytic partial oxidation Steam Hydrocarbon reforming, Manufacturing of ammonia by Linde Ammonia concept process, Storage and Transportation of Ammonia, Nitric acid: Chemical, physical properties and applications, Manufacturing of Nitric Acid by Pressure ammonia oxidation process and Intermediate pressure ammonia oxidation process, Urea: Physical, chemical properties, Manufacturing of Urea by Stamicarbon's CO2 stripping process, Manufacturing of Ammonium nitrate by Prilling process.	10	30

3.	Phosphatic Fertilizer Physical, chemical properties and applications of Phosphorus and Phosphoric acid, Manufacturing of elemental phosphorous by Electric furnace method, Manufacturing phosphoric acid by Wet Process, Strong Sulphuric Acid Leaching Hydrochloric Acid Leaching Electric Furnace Process.	05	15
	Section II		
4.	Potassic Fertilizers Physical, chemical properties and uses of Potassium Chloride, Potassium nitrate, Potassium sulphate, Manufacturing of potassium chloride from sylvinite, Preparation of Potassium nitrate, Potassium sulphate	0.0	20
5.	Complex Fertilizer and Bio Fertilizer Manufacturing of NPK, Ammonium Sulphate Phosphate (ASP), Calcium Ammonium Nitrate(CAN), Types of Biofertilizers, Biofertilizers Nitrogen-fixing biofertilizers Phosphate- solubilizing biofertilizers, Preparation of a biofertilizers	05	20

List of Practical:

Sr. No.	Name of Practical	Hours
1	Prepare chart for fertilizer classification with chemical formula and	06
	nutrient content	
2	Estimate nutrient content (% N, %P ₂ O, % K ₂ O) in different fertilizers from	06
	their chemical formula	
3	Estimate percentage of Nitrogen in Ammonium chloride by substitution	06
	method	
4	Estimate percentage of Nitrogen in Ammonium sulfate by substitution	06
	method	
5	Estimate percentage of Nitrogen in Ammonium chloride by back titration	06
6	Estimate percentage of Nitrogen in Ammonium sulphate by back titration	06
7	Prepare potassium sulphate	06
8	Estimate ratio from Ammonia to Phosphoric acid in DAP	06
9	Prepare bio-fertilizer	06
10	Estimate percentage of Nitrogen in DAP by Formaldehyde method	06

Text Book(s):

Title	Author/s	Publication
Dryden's Outlines of Chemical Technology	1	Affiliated East West Press (Pvt) Ltd, 3rd Ed., New Delhi
Chemical Technology -Vol. I and II, 2nd edition		Vani Books Company - Hyderabad
Biofertilizers in Agriculture, 2nd edition		Oxford & IBH Publishing Company, New Delhi 1988

Reference Book(s):

Title	Author/s	Publication
Shreve's Chemical Process	Austin G.T.	McGraw Hill publication, New Delhi
Industries, 5th edition		

Web Material Link(s):

• http://nptel.ac.in/courses/103107086/4

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Tutorial/Practical:

- Continuous Evaluation consists of performance of tutorial which will be evaluated out of 10 marks for each tutorial and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 20 marks during End Semester Exam.
- Viva/Oral presentation consists of 20 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, students will be able to:

CO1	Identify the different nutrients and significance of feed stocks for the production of
	fertilizers.
CO2	Classify various methods for the production of nitrogenous fertilizers.
CO3	Apply different manufacture methods for various phosphorous fertilizers.
CO4	Assess the production methods for potassium and mixed complex fertilizers.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Overview of Fertilizers	1,2
2	Nitrogenous Fertilizers	1,2,3
3	Phosphatic Fertilizer	2,3,5
4	Potassic Fertilizers	3,4,5
5	Complex Fertilizer and Bio Fertilizer	4,5,6

THIRD YEAR DIPLOMA ENGINEERING

CONTENT

Sr. No.	Content	Page No
1	Syllabi of Fifth semester	71 to 86
2	Syllabi of Six semester	87 to 92

P P SAVANI UNIVERSITY INSTITUTE OF DIPLOMA STUDIES TEACHING & EXAMINATION SCHEME FOR DIPLOMA ENGINEERING PROGRAMME AY:2023-24 **Teaching Scheme Examination Scheme** Course Code Course Title Offered Sem Theory Practical Tutorial **Contact Hours** Bv Cred Total Practical Tutorial Total ESE CE CE ESE CE ESE Theory it IDCH3011 Mass Transfer-II СН Chemical Engineering IDCH3041 CH Equipment Drawing Pharmaceutical Technology СН IDCH3051 Computer Applications in IDCH3060 CH Chemical Engineering Chemical Reaction IDCH3070 CH Engineering IDCH3910 Summer Training СН 00 100 **Total** Plant Design, Management IDCH3030 CH & Economics Petro Chemical Technology CH IDCH3081 Grooming Corporate SEPD3020 CH Etiquette 200 300 IDCH3920 Project/Training CH Total

Department of Chemical Engineering

Course Code: IDCH3011 Course Name: Mass Transfer-II Prerequisite Course(s): --

Teaching Scheme (Hours/Week)				Ex	aminati	on Scher	ne (Mar	ks)		
Theory	Practical Tutorial		Tutorial Credit		eory	Prac	ctical	Tute	orial	Total
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
2	4	0	4	40	60	40	60	0	0	200

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- Apply fundamentals of mass transfer and techniques involved in mass transfer operations of humidification, drying and adsorption.
- Operate and design various mass transfer equipment's.

Section I					
Module.	Content	Hours	Weightage		
No.			in %		
1.	Distillation: Importance of distillation as separation method, Vapor-liquid equilibrium, Relative volatility, Ideal solutions with Raoult's law, Henry's law, Flash vaporization with material balance calculation, Calculations of vapor liquid equilibrium, Differential distillation with Rayleigh's equation of simple calculation, Steam distillation, Continuous rectification – binary system based on McCabe & Thiele methods with calculation.	08	25		
2.	Humidification: Concept of partial pressure & vapor pressure, Definitions & Simple calculations for absolute humidity, Relative saturation & percentage saturation, Concept of wet bulb temperature, Dry bulb temperature, Dew point, Humid volume, Humid heat, psychrometric chart.	07	25		
	Section II				
1.	Drying: Applications, understanding of various definitions, Types and Classification of drying operations, freeze drying, drying test and derivation of equations for drying time and simple calculations.	05	20		
2.	Adsorption and Ion Exchange: Concept and application, types of adsorption, Hystersis,	05	15		

	Characteristics and nature of adsorbents, Effect of temperature,		
	Freundlich equation and it's applications for single stage operation,		
	Major applications and factors affecting ion-exchange.		
	Crystallization:		
	Concept and application, methods for supersaturation, classification		
3.	of crystallizer, Meir's theory, concept of nucleation and crystal	05	15
	growth, effect of seeding and simple calculations for percentage		
	yield, construction and working Vacuum crystallizer.		

List of Practical

Sr No	Name of Practical/Tutorial	Hours
1	Natural draft tray dryer experiment	04
2	Spray Dryer Experiment	08
3	Fluidized bed dryer equipment	04
4	Rotary dryer equipment	08
5	Simple Distillation experiment	08
6	Steam distillation experiment	04
7	Humidification and dehumidification set-up	08
8	Solid-liquid adsorption	08
9	Crystallization experiment	08

Text Book(s):

Title	Author/s	Publication
Mass Transfer operation	R.E. Treybal	Mc-Graw Hill International Editions
Mass Transfer	Sherwood, Pigford & Wilke	Mc-Graw Hill International Editions

Reference Book(s):

Title	Author/s	Publication
Unit operations of	W.L. McCabe, J.C. Smith	Mc-Graw Hill International
Chemical Engg.	&Harriott	Editions
Chemical Engineering	Coulson, J.M., Richardson, J.F.	Pergamon and ECBS, 1970

Web Material Link(s):

https://onlinecourses.nptel.ac.in/noc21 cy45/preview
https://nptel.ac.in/noc/courses/noc17/SEM2/noc17-cy03/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of performance of Practical which should be evaluated out of 20 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 20 marks.
- Practical performance/quiz/drawing/test of 30 marks during End Semester Exam.
- Viva/Oral presentation consists of 30 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the students will be able to:

CO1	Understand the concept of distillation.
CO2	Analyze problems involving calculation of trays required for desired separation in binary
	distillation column.
CO3	Understand and evaluate the performance of various mass transfer operations like
	adsorption, crystallization and drying.
CO4	Learn Drying mechanism and capillary mechanism in drying operation.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Distillation	1, 2
2	Humidification	1, 2, 3
3	Drying	1, 2, 3
4	Adsorption and Ion Exchange	2, 3, 4
5	Crystallization	2, 3, 4

Department of Chemical Engineering

Course Code: IDCH3041

Course Name: Chemical Engineering Equipment Drawing

Prerequisite Course(s): --

Teaching Scheme (Hours/Week)			Examination Scheme (Marks)									
Theory	Practical	Practical Tutorial		Tutorial Credit		The	Theory Pract		ctical	Tutorial		Total
Theory	Fractical	ai Tutoriai (Tutoriai Credit	CE	ESE	CE	ESE	CE	ESE	Total		
2	4	0	4	00	00	40	60	0	0	100		

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- The student will get the idea about all equipment drawing based on different industry industry
- Sketch Chemical engineering equipments, Process flow sheets and instrument symbols and plant layouts.
- The student will get also the idea about instrumentation diagram of all equipment.

	Section I		
Module.	Content	Hours	Weight age
No.			in %
1.	Drawing the Outline of Unit Operations of all equipment by	09	15
	schematic representation:-		
	Drawing all schematic representation like batch reactor,		
	continuous reactor, dryers, Evaporator, Extraction, Fluid		
	handling equipment, Fluid-solid contacting equipment, Fluid-		
	solid separation equipment, Filter press, crystallizer, cyclone		
	separator, Filters, Fluid storage and etc.		
2.	Drawing of symbols of Chemical Engineering equipment	15	20
	Duration:-		
	Drawing of symbols for heat transfer equipment ; heat		
	exchanger, water cooler, Steam Heater, Re-boiler and		
	Condenser; Drawing of symbols for pumps compressors and		
	boiler; agitator, jacketed kettle, absorber, stripper,		
	fractionating column, pipe lines and flow meters. Drawing of		
	symbols for instruments such as flow measurement,		
	temperature, pressure and level.		
3.	Drawings of various Chemical Engineering equipment	08	15

	Duration:-		
	Draw neat sketches of 1-1 and 2-4 Shell & tube heat exchanger;		
	Short tube vertical evaporator and Long tube forced circulation		
	evaporator ; Rotary drum vacuum filter; Bubble cap plate; Jaw		
	crusher; Plate & Frame filter press, Distillation column.		
	Section II		
1.	Process block diagrams/Utility diagrams / Flow diagrams	08	10
	using process description Duration:-		
	Process block diagram of some process used in industries in		
	different ways, draw the flow diagram of the same process,		
	Utility flow diagram (UFD) is a drawing giving information		
	similar to PFD but about utility equipment. Here again		
	equipment capacity, line sizes, pressure rating,		
	control/monitoring instruments, etc. are indicated in the		
	related drawing.		
2.	Process instrumentation diagram of equipments using	09	20
	different instrumentation symbols:-		
	Reactor temperature control; Hot fluid temperature control in		
	heat exchanger; Spray drier temperature control; Forced		
	circulation evaporator control with vertical heat exchanger;		
	Control of mechanically agitated vessel used for gas		
	absorption; Distillation column tower pressure control ;		
	Distillation column control of level and reflux condenser with		
	pumped reflux column ; Steam flow rate and level control of re-		
	boiler and cooler temperature control		
3.	Process equipment layout and Project layout Duration:-	11	20
	Equipment layout in Ammonia plant; water treatment plant;		
	sugar manufacturing unit; Paper industry and cement plant		
	Drawing of project layout for phosphoric acid, urea plant in		
	fertilizer Industry Drawing of project layout of petroleum		
	refinery consisting various units like CDU, FCCU, utilities etc.		

Text Book(s):

Title	Author/s	Publication
Chemical Engineering drawing	R.S.Hiremath	Nirali Publications
Plant design drawing by vibrant &	Vilbrandt Frank C.	Mc Graw Hill
Dryden		publications
Chemical Engineering drawing	KA Ghavane	Nirali publications

Reference Book(s):

Title	Author/s	Publication
Unit Operations of	McCabe and W.L Smith V Edn	McGraw Hill
Chemical Engineering		

	Robert H Perry, Don W. Green	McGraw Hill
Perrys Chemical		
Engineers Handbook		

List of Practical:-

- 1. Student should maintain a separate A3 size sketch book which will be the part of term work and submit it along with drawing sheets. Assignment should be drawn in the sketch book as per the instruction given by subject teacher.
- 2. Drawing all schematic representation required in chemical industries.
- 3. Students should collect various process flow diagrams from nearby chemical process industries.
- 4. Collect different samples of pipe fittings and joints.
- 5. Students should collect various specification sheets for equipments from nearby chemical process industries.
- 6. Students should collect all piping diagram nearby industries
- 7. Prepare chart of piping diagram of different industries and attached in instrumentation laboratory.
- 8. Prepare chart for instrumentation and control attached to various equipments in institute laboratories.

Web Material Link(s):

- http://nptel.ac.in
- www.flowmaster.com
- www.vlab.co.in
- Pipeflow.co.uk

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

CO1	Draw symbols for important Chemical engineering equipments
CO2	Sketch and demonstrate equipments like heat exchangers, evaporators, jaw crusher, and
	filters.
CO3	Sketch and demonstrate process flow sheets for manufacture of different chemicals
CO4	Sketch, demonstrate and analyze Process instrumentation diagrams of equipments using
	different instrumentation symbols
CO5	Sketch and demonstrate equipment layouts and project layouts of different chemical
	engineering plants

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Drawing the Outline of Unit Operations of all equipment by schematic representation	1,2,6
2	Drawing of symbols of Chemical Engineering equipment Duration	1,2,4,6
3	Drawings of various Chemical Engineering equipment Duration	1,2,3,6
4	Process block diagrams/Utility diagrams / Flow diagrams using process description Duration	1,3,4,6
5	Process instrumentation diagram of equipments using different instrumentation symbols	1,2,3,6
6	Process equipment layout and Project layout Duration	1,2,4,6

Department of Chemical Engineering

Course Code: IDCH3051

Course Name: Pharmaceutical Technology

Prerequisite Course(s): --

Teaching Scheme (Hours/Week)			Examination Scheme (Marks)								
Theory	Practical	Practical Tutorial Credi		The	eory	Prac	ctical	Tute	orial	Total	
Theory	Fractical	Tutoriai Ci	Tutoriai Greuit	Credit	CE	ESE	CE	ESE	CE	ESE	Total
2	4	0	4	40	60	40	60	0	0	200	

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

• basic engineering principles and unit operations pertaining to pharmaceutical plants

	Section I						
Module.	Content	Hours	Weightage				
No.			in %				
	Materials of pharmaceutical plant construction:						
	Overview of composition, corrosion, properties and applications of						
1.	the materials of construction with special reference to stainless	08	25				
1.	steel and glass, Industrial Hazards and Safety Precautions -	00	23				
	Mechanical, Chemical, Electrical, Fire and Dust hazards, Industrial						
	dermatitis, Accident records, etc.						
	Fluid flow, heat transfer in pharmaceutical operations:						
	Types of flow, Concepts of boundary layer, Basic equation of fluid						
2.	flow, Valves, Flow meters, Manometers and Measurement of flow	07	25				
2.	and pressure, source of heat, heat transfer, steam and electricity as	07	25				
	heating media, determination of requirement of amount of steam /						
	electrical energy, steam pressure.						
	Section II						
	Filtration, centrifugation and crystallization:						
	Theory of filtration, industrial filters including filter press, rotary						
1.	press, rotary filter, edge filter, etc. Factors affecting filtration.	05	20				
1.	Principles of centrifugation, industrial centrifugal filters and	05	20				
	centrifugal sedimentary. Study of various types of crystallisers.						
	Caking of crystals and its prevention.						
2.	Humidity control, refrigeration, and air-conditioning in						
	pharma plants:	05	15				
	Basic concepts, definition, wet bulb and adiabatic saturation						

	temperatures, psychometric chart and measurement of humidity, application of humidity measurement in pharmacy. Equipment for dehumidification operations, principle and applications of		
	refrigeration and air conditioning.		
3.	Evaporation, distillation and drying in pharma plants: Basic concepts of phase equilibrium, factors affecting evaporation, evaporators, film evaporators, single effect and multiple effect evaporators, simple & steam flash distillation, Azeotropic and extractive distillation and Moisture content, mechanism of drying, dryers used in pharmaceutical industries, special drying methods.	05	15

List of Practical

Sr No	Name of Practical/Tutorial	Hours
1	Double Effect evaporator experiment	04
2	Spray Dryer Experiment	08
3	Plate & Frame experiment	04
4	Composite Plate heat transfer experiment	08
5	Simple Distillation experiment	08
6	Steam distillation experiment	04
7	Humidification and dehumidification set-up	08
8	Solid-liquid adsorption	08
9	Crystallization experiment	08

Text Book(s):

Title	Author/s	Publication	
Unit operations of	W.L. McCabe, J.C. Smith	Mc-Graw Hill International	
Chemical Engg.	&Harriott	Editions	
Transport process and	Geankopolis, C.J	4th edition, prentice Hall of	
separation process principles		India 2005	

Reference Book(s):

Title	Author/s	Publication
The Science and Practice	Remington's	Mack Publishing Co. Easton
of Pharmacy		
Chemical Engineering	Coulson, J.M., Richardson, J.F.	Pergamon and ECBS, 1970

Web Material Link(s):

https://onlinecourses.nptel.ac.in/noc21 cy45/preview https://nptel.ac.in/noc/courses/noc17/SEM2/noc17-cy03/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of performance of Practical which should be evaluated out of 20 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 20 marks.
- Practical performance/quiz/drawing/test of 30 marks during End Semester Exam.
- Viva/Oral presentation consists of 30 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the students will be able to:

CO1	Know various unit operations used in Pharmaceutical Industries.
CO2	Understand the material handling techniques.
CO3	Perform various processes involved in pharmaceutical manufacturing process
CO4	Comprehend significance of plant lay out design for optimum use of resources.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Materials of pharmaceutical plant construction	1, 2, 3
2	Fluid flow, heat transfer in pharmaceutical operations	1, 2, 3
3	Filtration, centrifugation and crystallization	1, 2, 3,6
4	Humidity control, refrigeration, and air-conditioning in pharma plants	2, 3, 4,5
5	Evaporation, distillation and drying in pharma plants	2, 3, 4

Department of Chemical Engineering

Course Code: IDCH3060

Course Name: Computer Application in Chemical Engineering

Prerequisite Course(s): --

Teaching Scheme (Hours/Week)				Ex	aminati	on Scher	ne (Mar	ks)		
Theory	Practical Tutorial Credit		Dractical	The	eory	Prac	ctical	Tute	orial	Total
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
2	4	0	4	00	00	40	60	0	0	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

- Introduction of computational and numerical techniques that may be used to solve a variety of chemical engineering problems.
- Solving problems in subsequent chemical engineering using Calculator, MS excel.
- Understand and implement key numerical routines
- To create mathematical model for different reactor and equipment

	Section I				
Module.	Content	Hours	Weightage		
No.			in %		
1.	Computer and Modeling, Review of Excel Basic of excel, Lookup & functions, Conditional formatting, Data validation, Sorting and filtering, Data analysis using tool pak, Methods for Data Analysis in Excel, Data Analysis with Microsoft Excel, Simple Linear Regression Model in Microsoft Excel	05	15		
2.	Round off and Truncation Errors Absolute & Relative Errors, Round-off Error, Relative Approximate Error, Taylor Series, Significant digits, Floating Point Operations, Error Propagation, Numerical Cancellation	05	10		
3.	Dimensional Analysis, Optimization Unit conversion, CGs unit, SI unit, Dimensional variable, Dimensional constant	06	15		
4.	Linear Algebraic Equations and Matrices, Introduction to Systems of Linear Equations, Linear Systems in Two and Three Unknowns, Mathematical operations with matrices (addition,	06	10		

	multiplication), Matrix inverses and determinants, Solving		
	systems of equations with matrices		
	Section II		
	Drying, evaporation, distillation		
1.	Material balance without chemical reaction	05	10
1.	General balance equation, procedure for material balance	05	10
	calculations, yield, selectivity & conversion, application		
	Calculations of CSTR and PFR using MS Excel		
2.	CSTR, PFR, CSTR in series, CSTR followed by PFR	06	15
	PFR followed by CSTR		
	Material balance with and without chemical reaction		
3.	General balance equation, procedure for material balance	06	15
	calculations, yield, selectivity & conversion, application		
	Energy balance with and without chemical reaction		
4.	General balance equation, procedure for material balance	06	10
	calculations, yield, selectivity & conversion, application		

List of Practical

Sr No	Name of Practical/Tutorial	Hours
1	Introduction to MS excel, scientific calculator	02
2	Chemical equation and stoichiometry	04
3	Drying, evaporation, distillation	04
4	Steady state reactors: To find out size of CSTR and PFR using MS Excel	04
5	Basics unit operations using MS excel	04
6	Material balance with chemical reaction	04
7	Material balance with bypass operation	04
8	Energy balance with chemical reaction	02
9	To find out the tube diameter using MS Excel in double pipe and shell and	02
	tube exchanger.	

Text Book(s):

Title	Author/s	Publication
Introduction To Software For Chemical	Marino Martin Martin	Taylor & Francis
Engineers		
Applications Of Microsoft Excel In	Stanley R. Crouch, F. James Holler	Cengagebrain
Analytical Chemistry		

Reference Book(s):

Title	Author/s	Publication
Numerical Methods For Chemical	Victor J. Law	Taylor & Francis Inc
Engineers Using Excel, Vba And		
Matlab		
Microsoft Excel for Engineers	Delores M. Etter	Prentice Hall PTR

Web Material Link(s):

https://www.youtube.com/watch?v=0UCxrt4nI3A&list=PLGED90Y uL1Ji9LShCQ7Z0xpl1 bx usx0&ab channel=MohammedMohammed

https://www.youtube.com/watch?v=7-

<u>D0LZ8LwdU&list=PLbovhQcaPucXEL2x2Dej8NJj tB5kL0bT&ab channel=TheProcessEngine er</u>

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of performance of Practical which should be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral presentation consists of 15 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

CO1	Select a computational tool that is capable of solving a particular chemical engineering problem. Such tools include MS Excel, and Scientific Calculator.				
CO2	Initiate and solve problems by numerical methods				
CO3	Understand and implement key numerical routines for chemical engineering problems.				
CO4	Perform statistical analysis of data.				

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	odule No Content	
1	Computer and Modeling, Review of Excel	1, 2
2	Round off and Truncation Errors	1, 2, 3
3	Dimensional Analysis, Optimization	1, 2, 3
4	Linear Algebraic Equations and Matrices,	2, 3, 4
5	Linear Regression, Nonlinear Regression, Interpolation	2, 3, 4
6	Calculations of CSTR and PFR using MS Excel	2, 3, 4
7	Material balance with and without chemical reaction	1, 2, 5
8	Energy balance with and without chemical reaction	1, 2, 5

Department of Chemical Engineering

Course Code: IDCH3070

Course Name: Chemical Reaction Engineering

Prerequisite Course(s): --

	Teaching Scheme (Hours/Week)				Ex	aminati	on Scher	ne (Mar	ks)		
	Theory	Practical	Tutorial	Credit	The	eory	Prac	tical	Tuto	orial	Total
		Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
	2	4	0	4	40	60	40	60	0	0	200

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- To apply knowledge from calculus, differential equation, thermodynamics, general chemistry and material and energy balances to solve reactor design problems.
- To examine reaction rate data to determine rate laws and to use them to design chemical reactors.
- To accomplish the task of selecting, sizing and determining the optimal operating conditions for the reactor.

Section I						
Module.	Content	Hours	Weightage			
No.			in %			
	Basics of Chemical Reactions					
	Scope and importance of Chemical Reaction Engineering;					
1.	Chemical Kinetics; Classifications of Chemical Reaction; Basics	05	15			
	of Reactor design; Rate of Chemical reaction- Reaction rate on					
	various basis, Factors affecting Rate equation.					
	Kinetics of Homogeneous Reactions					
	Rate Expression; Concentration Dependent term; Rate					
2.	constant; Reaction Mechanism; Elementary and Non-	05	15			
۷.	Elementary Reaction; Molecularity of reaction; Order of	03	13			
	reaction; Temperature Dependent term of rate equation-					
	Arrhenius law, Activation Energy.					
	Interpretation of Batch Reactor Data					
	Introduction; Data Collection; Method for analyzing kinetic					
3.	data-Integral Method, Differential Method, Constant volume	05	20			
	batch reactor, Integrated rate equation for different order					
	reaction, Half-life Method.					

	Section II					
1.	Ideal Reactors Features of Ideal reactor; Different types of reactor- Batch reactor, Semi batch reactor, Flow reactors, Multiphase reactor.	05	15			
2.	Design of Single ideal Reactors Performance design equations of ideal reactors- Batch reactor, CSTR, PFR; Space Time, Space velocity.	05	15			
3.	Design for Single Reactions Size comparison of single reactors; Comparison of CSTR		20			

List of Practical

Sr No	Name of Practical/Tutorial			
1	To determine the value of rate constant for the hydrolysis of ethyl acetate	08		
	catalysed by hydrochloric acid.			
2	To study the hydrolysis of ester (ethyl acetate) by alkali (NaOH). Show the	08		
	reaction is kinetically second order. Also calculate the velocity constant.			
3	To calculate value of rate constant - K for the saponification of ethyl	08		
	acetate with NaOH in batch reactor-I (where M=1).			
4	To calculate value of rate constant - K for the saponification of ethyl acetate	08		
	with NaOH in TFR.			
5	To calculate value of rate constant - K for the saponification of ethyl acetate			
	with NaOH in Continuous Stirred Tank Reactor.			
6	To calculate value of rate constant -K for the saponification of ethyl acetate			
	with NaOH in packed bed reactor.			
7	To calculate value of rate constant - K for the saponification of ethyl acetate	10		
	with NaOH in CSTR in series.			

Text Book(s):

Title				Author/s	Publication	
Chemical reaction engineering			5	Y.O. Levenspiel	John Wiley an	d Sons.
Essentials	of	Chemical	reaction	H. S. Fogler	Prentice	Hall
engineering					International	series

Reference Book(s):

Title	Author/s	Publication
The Engineering of	L. D. Schmidt	Oxford University Press
Chemical reactions		
Chemical Reaction	K. A. Gavhane	Nirali Prakashan
Engineering-I		

Web Material Link(s):

https://www.youtube.com/watch?v=DpLAsVcofao&list=PLwdnzlV3ogoUC9IWVOPTGqV5eEVN RAfGa

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of performance of Practical which should be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral presentation consists of 15 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

	1 , 0			
CO1	Explain basic concepts to distinguish chemical reactions.			
CO2	Calculate rate, rate constant, activation energy and order of reaction.			
CO3	Interpret kinetic data to find order of reactions.			
CO4	Operate different reactors efficiently using basic knowledge about their functioning.			

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Basics of Chemical Reactions	1, 2
2	Kinetics of Homogeneous Reactions	1, 2
3	Interpretation of Batch Reactor Data	1, 2, 3
4	Ideal Reactors	2, 3, 4
5 Design of Single ideal Reactors		1, 2, 5
6	Design for Single Reactions	1, 2, 5

Department of Chemical Engineering

Course Code: IDCH3030

Course Name: Plant Design, Management & Economics

Prerequisite Course(s): --

Teaching Scheme (Hours/Week)					Ex	aminati	on Scher	ne (Mar	ks)	
Theory	Practical	Tutorial Cro		The	eory	Prac	ctical	Tute	orial	Total
Theory	Flactical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
3	0	0	3	40	60	0	0	0	0	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

• To understand various design and development of plant with cost calculation and analysis of profitability in chemical process industries.

	Section I		
Module.	Content	Hours	Weightage
No.			in %
	Introduction		
1.	Role of chemical engineers, Need for plant design, Process	06	10
	design, basic for good design		
	Project Development		
2.	Objective of plant Project, Process evaluation stages and their	06	15
۷.	importance, Pilot plant formation, Technical factors, Economics	06	15
	Factors, Legal phases		
	Process Design		
3.	Selection of Process, Continuous v/s Batch Processing, shift and	06	15
3.	operating Schedule, Types of flow diagram, block diagram,	00	13
	Material and Energy Balance.		
	Selection Process Equipment and materials		
4.	Selection of material and process equipment, selection of	07	15
	pumps and dryers.		
	Section II		
	Plant location and Layout		
1.	Factors to be considered in plant and sight location, Primary	07	15
1.	factors, Specific factors, principles of plant layout, factors	07	13
	methods for plant layout, unit area concept, Two-dimensional		

	layout, scale models		
2.	Economic Evaluation of Project Capital and Fixed cost, Working capital investment, Depreciation, Methods for determining depreciation, total product cost, Utilities, maintenance and repairs cost, Net and gross earnings, Profitability analysis, Percent Return on investment, Payout time, Break Even chart, Turn Over Ratio	07	15
4.	Optimum design Procedure for determining optimum stage, Optimum economic design for insulation thickness, pipe diameter, Optimum Operation Design, Process Auxiliaries	07	15

Text Book(s):

Title	Author/s	Publication
Chemical Engineering Design	Gavin Towler, Ray Sinnott	Elsevier Inc.
Chemical Engg. Plant Design	Vibrant and Dryden	McGraw Hill 3rd
		Edition

Reference Book(s):

Title			Author/s	Publication
Plant	design	and	M.S. Peters and Timmerhaus.	McGraw Hill 3rd
Econom	nics	for		Edition
Chemic	al Engineer	`S		

Web Material Link(s):

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course Coordinator.
- End Semester Examination consists of 60 marks.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

CO1	Know and understand basic economic concept and apply this concepts in the project works
	undertaken and to chemical engineering situation by solving problem
CO2	Know, understand and Select appropriate process for a project Differentiate the equipment
	and able to prepare specification sheet.
CO3	Evaluate cost including capital investment, product cost, breakeven point, depreciation cost
	for equipment and the total project cost and solve problem on profitability and replacement
	analysis

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Role of Chemical Engineers	1, 2
2	Project Development	1, 2, 3
3	Process Design	1, 2, 3
4	Selection Process Equipment and materials	2, 3, 4
5	Plant location and Layout	2, 3, 4
6	Economic Evaluation of Project	2, 3, 4
7	Optimum design	1, 2, 4

Department of Chemical Engineering

Course Code: IDCH3081

Course Name: Petrochemical technology

Prerequisite Course(s): --

Teaching Scheme (Hours/Week)					Ex	aminati	on Scher	ne (Mar	ks)			
Theory	Practical Tutorial		Dragtical Tutorial Cradi		Cradit	The	eory	Prac	tical	Tute	orial	Total
Theory	Fractical	Tutoriai	licai Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total	
3	4	0	7	40	60	40	60	0	0	200		

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

• To operate petroleum refinery and petro-chemical plant.

	Section I		
Module.	Content	Hours	Weightage
No.			in %
	Basics of Petroleum		
1.	History, origin and formation of petroleum, world reserves of	02	10
	petroleum, Indian petroleum industries & types		
	Composition of petroleum		
	Composition of Petroleum, Classification of Petroleum,		
2.	Chemistry of petroleum, Exploration & production of	10	20
	petroleum methods of exploration, transportation of petroleum		
	products, Evaluation of petroleum		
3.	Properties & test methods of Petroleum	10	20
ა.	Gas, gasoline, Naphtha, kerosene, Diesel, Lube oil, Bitumen	10	20
	Petrochemicals		
1.	Definition, History & Major petrochemical products, their	03	10
	Producers in India & raw materials for petrochemicals		

2.	C1,C2,C3,C4 compounds Manufacturing of important C1 compounds: Methanol, Formaldehyde; Manufacturing of important C2 compounds: Ethylene dichloride, Vinyl chloride, Ethylene Oxide; Manufacturing of important C3 compounds: Polypropylene, Propylene oxide; Chemicals from aromatics: Manufacture of Linear Alkyl Benzene, Manufacture of Phenol by benzene sulfonate process	10	20
3.	Cracking Introduction & definition of cracking, Chemistry & technology Catalytic cracking, Catalytic reforming, Coking Alkylation process & Isomerisation process, Polymer Gasoline Hydro cracking	10	20

List of Practical

Sr No	Name of Practical	Hours
1	Prepare a detail chart of petrochemical products	06
2	To determine the Flash point of Different types of crude oil by Penskey	06
	Martin (closed up) apparatus	
3	To determine the Fire point of Different types of crude oil by Penskey	06
	Martin (closed up) apparatus	
4	Measure softening point of Grease	06
5	To measure Carbon residue (Conardson method) of Different types of	06
	crude oil	
6	To determine the Cloud & Pour point of Different types of crude oil	06
7	To measure the Penetration number of Different types of crude oil	06
8	To determine the Smoke point of Different types of crude oil	06
9	To determine the Aniline point of Different types of crude oil	06
10	Measure Viscosity of lube oil by Redwood /Saybolt/Engler viscometer	06

Text Book(s):

Title			Author/s	Public	Publication	
A Text on Petrochemicals			B.K.Bhaskar Rao	2 _{nd} Publis	Edition, shers, Delhi, 19	Khanna 998
Modern Processes	Petroleum	Refining	B. K.Bhaskar Rao	Oxfor	d and IBH, 20	07

Reference Book(s):

Title	Author/s	Publication
Outlines of chemical Technology	M. Gopala Rao,	3rd Edition East-West press
	Marshall Sittig	pvt. Ltd, Delhi

Web Material Link(s):

https://nptel.ac.in/courses/103107082

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of performance of Practical which should be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral presentation consists of 15 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

CO1	To Design solutions for complex engineering problems and design system components or		
	processes that meet the specified needs.		
CO2	To understand about Origin formation & composition of petroleum, distillation of crude.		
CO3	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal		
	and cultural issues.		
CO4	To know about different treatment techniques.		
CO5	Create, select, and apply appropriate techniques, resources, and modern engineering.		

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Basics of Petroleum	1, 2
2	Composition of petroleum	1, 2
3	Properties & test methods of Petroleum	1, 2
4	Petrochemicals	2, 3, 4
5	C1,C2,C3,C4 compounds	2, 3, 4
6	Cracking	2, 3, 4

© 2022 All rights reserved to
P P Savani School of Engineering
P P Savani University Campus, NH 48, GETCO, Near Biltech, Village:
Dhamdod, Kosamba, Dist.: Surat – 394125